CLAM: Continuous Latent Action Models for Robot Learning from Unlabeled Demonstrations
- URL: http://arxiv.org/abs/2505.04999v1
- Date: Thu, 08 May 2025 07:07:58 GMT
- Title: CLAM: Continuous Latent Action Models for Robot Learning from Unlabeled Demonstrations
- Authors: Anthony Liang, Pavel Czempin, Matthew Hong, Yutai Zhou, Erdem Biyik, Stephen Tu,
- Abstract summary: Learning robot policies using imitation learning requires collecting large amounts of costly action-labeled expert demonstrations.<n>A promising approach is to harness the abundance of unlabeled observations-e.g., from video demonstrations-to learn latent action labels in an unsupervised way.<n>We design continuous latent action models (CLAM) which incorporate two key ingredients we find necessary for learning to solve complex continuous control tasks from unlabeled observation data.
- Score: 11.604546089466734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning robot policies using imitation learning requires collecting large amounts of costly action-labeled expert demonstrations, which fundamentally limits the scale of training data. A promising approach to address this bottleneck is to harness the abundance of unlabeled observations-e.g., from video demonstrations-to learn latent action labels in an unsupervised way. However, we find that existing methods struggle when applied to complex robot tasks requiring fine-grained motions. We design continuous latent action models (CLAM) which incorporate two key ingredients we find necessary for learning to solve complex continuous control tasks from unlabeled observation data: (a) using continuous latent action labels instead of discrete representations, and (b) jointly training an action decoder to ensure that the latent action space can be easily grounded to real actions with relatively few labeled examples. Importantly, the labeled examples can be collected from non-optimal play data, enabling CLAM to learn performant policies without access to any action-labeled expert data. We demonstrate on continuous control benchmarks in DMControl (locomotion) and MetaWorld (manipulation), as well as on a real WidowX robot arm that CLAM significantly outperforms prior state-of-the-art methods, remarkably with a 2-3x improvement in task success rate compared to the best baseline. Videos and code can be found at clamrobot.github.io.
Related papers
- Action Flow Matching for Continual Robot Learning [57.698553219660376]
Continual learning in robotics seeks systems that can constantly adapt to changing environments and tasks.<n>We introduce a generative framework leveraging flow matching for online robot dynamics model alignment.<n>We find that by transforming the actions themselves rather than exploring with a misaligned model, the robot collects informative data more efficiently.
arXiv Detail & Related papers (2025-04-25T16:26:15Z) - FAST: Efficient Action Tokenization for Vision-Language-Action Models [98.15494168962563]
We propose a new compression-based tokenization scheme for robot actions, based on the discrete cosine transform.<n>Based on FAST, we release FAST+, a universal robot action tokenizer, trained on 1M real robot action trajectories.
arXiv Detail & Related papers (2025-01-16T18:57:04Z) - Coarse-to-fine Q-Network with Action Sequence for Data-Efficient Robot Learning [62.3886343725955]
We introduce Coarse-to-fine Q-Network with Action Sequence (CQN-AS), a novel value-based reinforcement learning algorithm.<n>We study our algorithm on 53 robotic tasks with sparse and dense rewards, as well as with and without demonstrations.
arXiv Detail & Related papers (2024-11-19T01:23:52Z) - Latent Action Pretraining from Videos [156.88613023078778]
We introduce Latent Action Pretraining for general Action models (LAPA)
LAPA is an unsupervised method for pretraining Vision-Language-Action (VLA) models without ground-truth robot action labels.
We propose a method to learn from internet-scale videos that do not have robot action labels.
arXiv Detail & Related papers (2024-10-15T16:28:09Z) - Imitation Learning with Limited Actions via Diffusion Planners and Deep Koopman Controllers [23.292429025366417]
We propose a plan-then-control framework aimed at improving the action-data efficiency of inverse dynamics controllers.<n>Specifically, we adopt a Deep Koopman Operator framework to model the dynamical system and utilize observation-only trajectories to learn a latent action representation.<n>This latent representation can then be effectively mapped to real high-dimensional continuous actions using a linear action decoder.
arXiv Detail & Related papers (2024-10-10T03:33:57Z) - A Dual Approach to Imitation Learning from Observations with Offline Datasets [19.856363985916644]
Demonstrations are an effective alternative to task specification for learning agents in settings where designing a reward function is difficult.
We derive DILO, an algorithm that can leverage arbitrary suboptimal data to learn imitating policies without requiring expert actions.
arXiv Detail & Related papers (2024-06-13T04:39:42Z) - The impact of Compositionality in Zero-shot Multi-label action recognition for Object-based tasks [4.971065912401385]
We propose Dual-VCLIP, a unified approach for zero-shot multi-label action recognition.
Dual-VCLIP enhances VCLIP, a zero-shot action recognition method, with the DualCoOp method for multi-label image classification.
We validate our method on the Charades dataset that includes a majority of object-based actions.
arXiv Detail & Related papers (2024-05-14T15:28:48Z) - Any-point Trajectory Modeling for Policy Learning [64.23861308947852]
We introduce Any-point Trajectory Modeling (ATM) to predict future trajectories of arbitrary points within a video frame.
ATM outperforms strong video pre-training baselines by 80% on average.
We show effective transfer learning of manipulation skills from human videos and videos from a different robot morphology.
arXiv Detail & Related papers (2023-12-28T23:34:43Z) - Few-Shot Continual Active Learning by a Robot [11.193504036335503]
We develop a framework that allows a CL agent to continually learn new object classes from a few labeled training examples.
We evaluate our approach on the CORe-50 dataset and on a real humanoid robot for the object classification task.
arXiv Detail & Related papers (2022-10-09T01:52:19Z) - Continuous Control with Action Quantization from Demonstrations [35.44893918778709]
In Reinforcement Learning (RL), discrete actions, as opposed to continuous actions, result in less complex exploration problems.
We propose a novel method: Action Quantization from Demonstrations (AQuaDem) to learn a discretization of continuous action spaces.
We evaluate the proposed method on three different setups: RL with demonstrations, RL with play data --demonstrations of a human playing in an environment but not solving any specific task-- and Imitation Learning.
arXiv Detail & Related papers (2021-10-19T17:59:04Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
Fine-grained action recognition is attracting increasing attention due to the emerging demand of specific action understanding in real-world applications.
We propose a few-shot fine-grained action recognition problem, aiming to recognize novel fine-grained actions with only few samples given for each class.
Although progress has been made in coarse-grained actions, existing few-shot recognition methods encounter two issues handling fine-grained actions.
arXiv Detail & Related papers (2021-08-15T02:21:01Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.