論文の概要: Image-Text Relation Prediction for Multilingual Tweets
- arxiv url: http://arxiv.org/abs/2505.05040v1
- Date: Thu, 08 May 2025 08:23:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.803095
- Title: Image-Text Relation Prediction for Multilingual Tweets
- Title(参考訳): 多言語つぶやきに対する画像-テキスト関係予測
- Authors: Matīss Rikters, Edison Marrese-Taylor,
- Abstract要約: 本研究は、多言語視覚言語モデルが、異なる言語における画像-テキスト関係予測の課題にどのように取り組むかを考察する。
我々はラトビアのTwitter投稿から、手動による英語への翻訳とともに、専用のバランスのとれたベンチマークデータセットを構築した。
- 参考スコア(独自算出の注目度): 2.2296532015648043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Various social networks have been allowing media uploads for over a decade now. Still, it has not always been clear what is their relation with the posted text or even if there is any at all. In this work, we explore how multilingual vision-language models tackle the task of image-text relation prediction in different languages, and construct a dedicated balanced benchmark data set from Twitter posts in Latvian along with their manual translations into English. We compare our results to previous work and show that the more recently released vision-language model checkpoints are becoming increasingly capable at this task, but there is still much room for further improvement.
- Abstract(参考訳): さまざまなソーシャルネットワークが10年以上にわたってメディアのアップロードを許可してきた。
それでも、投稿されたテキストとどのような関係があるのか、あるいは何があるのかは必ずしも明確ではない。
本研究では,多言語視覚言語モデルが様々な言語における画像-テキスト関係予測の課題にどのように取り組むかを検討するとともに,ラトビアのTwitter投稿から,手動による英語への翻訳とともに,専用のバランスのとれたベンチマークデータセットを構築する。
我々はこの結果と過去の研究を比較し、最近リリースされたビジョン言語モデルチェックポイントがこのタスクでますます有能になっていることを示すが、まだ改善の余地がたくさんある。
関連論文リスト
- Multilingual Diversity Improves Vision-Language Representations [66.41030381363244]
このデータセットの事前トレーニングは、ImageNet上で英語のみまたは英語が支配するデータセットを使用してパフォーマンスが向上する。
GeoDEのような地理的に多様なタスクでは、アフリカから得られる最大の利益とともに、すべての地域における改善も観察します。
論文 参考訳(メタデータ) (2024-05-27T08:08:51Z) - Lost in Translation? Translation Errors and Challenges for Fair Assessment of Text-to-Image Models on Multilingual Concepts [107.32683485639654]
テキスト・トゥ・イメージ(T2I)モデルの多言語能力のベンチマークは、テスト言語で生成された画像と概念集合上の期待画像分布を比較した。
このようなベンチマークの一つである"Conceptual Coverage Across Languages" (CoCo-CroLa)は、7つの言語に翻訳された概念リストから画像を生成するように促すことで、T2Iモデルの具体的な名詞の在庫を評価する。
このベンチマークは、スペイン語、日本語、中国語の様々な重大度の翻訳誤りを含むことがわかった。
論文 参考訳(メタデータ) (2024-03-17T05:05:11Z) - Visually Grounded Reasoning across Languages and Cultures [27.31020761908739]
我々は、より多くの言語や文化を表すImageNetスタイルの階層を構築するための新しいプロトコルを開発する。
我々は、インドネシア語、中国語、スワヒリ語、タミル語、トルコ語など、類型的に多様な言語群に焦点を当てている。
画像のペアについて,ネイティブ話者アノテータから文を抽出することにより,多言語による視覚・言語上の多言語推論(MARVL)データセットを作成する。
論文 参考訳(メタデータ) (2021-09-28T16:51:38Z) - "Wikily" Neural Machine Translation Tailored to Cross-Lingual Tasks [20.837515947519524]
リンクされたウィキペディアページの最初の文とタイトル、およびクロスリンガル画像キャプションは、二言語辞書を抽出し、ウィキペディアからパラレルテキストをマイニングするためのクロスリンガル単語埋め込みを抽出するシードパラレルデータのための強力な信号である。
画像キャプションでは、アラビア語の訓練データが英語のキャプションデータのウィキリー翻訳であるアラビア語と英語のマルチタスク機械翻訳と画像キャプションパイプラインを訓練する。
アラビア語の字幕化の結果は、教師付きモデルよりも若干優れている。
論文 参考訳(メタデータ) (2021-04-16T21:49:12Z) - UC2: Universal Cross-lingual Cross-modal Vision-and-Language
Pre-training [52.852163987208826]
UC2は、言語間クロスモーダル表現学習のための最初の機械翻訳拡張フレームワークである。
Masked Region-token Modeling (MRTM) と Visual Translation Language Modeling (VTLM) の2つの新しいプリトレーニングタスクを提案する。
提案手法は,英語タスクにおける単言語学習モデルと同等の性能を維持しつつ,多種多様な非英語ベンチマークで新たな最先端を実現する。
論文 参考訳(メタデータ) (2021-04-01T08:30:53Z) - Improving Sentiment Analysis over non-English Tweets using Multilingual
Transformers and Automatic Translation for Data-Augmentation [77.69102711230248]
我々は、英語のつぶやきを事前学習し、自動翻訳を用いてデータ拡張を適用して非英語の言語に適応する多言語トランスフォーマーモデルを提案する。
我々のフランス語、スペイン語、ドイツ語、イタリア語での実験は、この手法が非英語のツイートの小さなコーパスよりも、トランスフォーマーの結果を改善する効果的な方法であることを示唆している。
論文 参考訳(メタデータ) (2020-10-07T15:44:55Z) - InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language
Model Pre-Training [135.12061144759517]
本稿では,言語間言語モデルの事前学習を定式化する情報理論フレームワークを提案する。
コントラスト学習に基づく新しい事前学習課題を提案する。
単言語コーパスと並列コーパスの両方を活用することで、事前訓練されたモデルの言語間変換性を向上させるために、プレテキストを共同で訓練する。
論文 参考訳(メタデータ) (2020-07-15T16:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。