論文の概要: Hybrid Personalization Using Declarative and Procedural Memory Modules of the Cognitive Architecture ACT-R
- arxiv url: http://arxiv.org/abs/2505.05083v1
- Date: Thu, 08 May 2025 09:32:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.826777
- Title: Hybrid Personalization Using Declarative and Procedural Memory Modules of the Cognitive Architecture ACT-R
- Title(参考訳): 認知アーキテクチャACT-Rの宣言型および手続き型メモリモジュールを用いたハイブリッドパーソナライゼーション
- Authors: Kevin Innerebner, Dominik Kowald, Markus Schedl, Elisabeth Lex,
- Abstract要約: 本稿では,認知アーキテクチャACT-Rに基づくハイブリッドユーザモデリングフレームワークを提案する。
我々は、より透明性のあるレコメンデーションを提供し、ルールに基づく説明を可能にし、認知バイアスのモデリングを容易にすることを目指している。
- 参考スコア(独自算出の注目度): 9.73847865216389
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommender systems often rely on sub-symbolic machine learning approaches that operate as opaque black boxes. These approaches typically fail to account for the cognitive processes that shape user preferences and decision-making. In this vision paper, we propose a hybrid user modeling framework based on the cognitive architecture ACT-R that integrates symbolic and sub-symbolic representations of human memory. Our goal is to combine ACT-R's declarative memory, which is responsible for storing symbolic chunks along sub-symbolic activations, with its procedural memory, which contains symbolic production rules. This integration will help simulate how users retrieve past experiences and apply decision-making strategies. With this approach, we aim to provide more transparent recommendations, enable rule-based explanations, and facilitate the modeling of cognitive biases. We argue that our approach has the potential to inform the design of a new generation of human-centered, psychology-informed recommender systems.
- Abstract(参考訳): レコメンダシステムは、しばしば不透明なブラックボックスとして動作するサブシンボリック機械学習アプローチに依存している。
これらのアプローチは、通常、ユーザの好みや意思決定を形成する認知プロセスを説明するのに失敗します。
本稿では,人間の記憶のシンボリック表現とサブシンボリック表現を統合した認知アーキテクチャACT-Rに基づくハイブリッドユーザモデリングフレームワークを提案する。
我々のゴールはACT-Rの宣言的メモリであり、サブシンボリックなアクティベーションに沿ってシンボリックなチャンクを保存し、そのプロシージャなメモリはシンボリックな生成規則を含んでいる。
この統合は、ユーザーが過去の経験を回収する方法をシミュレートし、意思決定戦略を適用するのに役立つ。
このアプローチでは、より透明性の高いレコメンデーションを提供し、ルールに基づく説明を可能にし、認知バイアスのモデリングを容易にすることを目指している。
われわれのアプローチは、新しい世代の人間中心の心理学的インフォームドレコメンデーションシステムの設計を知らせる可能性があると我々は主張する。
関連論文リスト
- Augmented Commonsense Knowledge for Remote Object Grounding [67.30864498454805]
エージェントナビゲーションを改善するための時間的知識グラフとして,コモンセンス情報を活用するための拡張コモンセンス知識モデル(ACK)を提案する。
ACKは知識グラフ対応のクロスモーダルとコンセプトアグリゲーションモジュールで構成され、視覚的表現と視覚的テキストデータアライメントを強化する。
我々は、より正確な局所的な行動予測につながるコモンセンスに基づく意思決定プロセスのための新しいパイプラインを追加します。
論文 参考訳(メタデータ) (2024-06-03T12:12:33Z) - Representation Learning with Large Language Models for Recommendation [33.040389989173825]
本稿では,大規模言語モデル (LLM) を用いた表現学習によるレコメンデータの強化を目的とした,モデルに依存しないフレームワーク RLMRec を提案する。
RLMRecには補助的なテキスト信号が組み込まれており、LLMが権限を持つユーザ/イテムプロファイリングパラダイムを開発し、LLMの意味空間と協調的関係信号の表現空間を整合させる。
論文 参考訳(メタデータ) (2023-10-24T15:51:13Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
我々は,思考の確率的言語(PLoT)に似た認知過程をモデル化するために,アトラクタダイナミクスを記号表現と統合した新しいニューラルシステムモデルを導入する。
我々のモデルは、連続表現空間を、事前定義されたプリミティブに頼るのではなく、教師なし学習を通じて、記号系の意味性と構成性の特徴を反映する、記号列に対応する引き付け状態を持つ離散盆地に分割する。
このアプローチは、認知操作の複雑な双対性を反映したより包括的なモデルを提供する、AIにおける表現力の証明された神経弁別可能な基質であるニューラルダイナミクスを通じて、シンボル処理とサブシンボル処理の両方を統合する統一的なフレームワークを確立する。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - A Novel Neural-symbolic System under Statistical Relational Learning [47.30190559449236]
NSF-SRLと呼ばれる統計的関係学習に基づくニューラルシンボリック・フレームワークを提案する。
シンボリック推論の結果は、深層学習モデルによる予測の洗練と修正に利用され、深層学習モデルはシンボリック推論プロセスの効率を高める。
我々は、このアプローチがニューラルシンボリックシステムの新しい標準となり、汎用人工知能の分野における将来の研究を促進すると信じている。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Analogical Concept Memory for Architectures Implementing the Common
Model of Cognition [1.9417302920173825]
そこで我々は,Soar の新たなアナログ概念メモリを提案し,宣言的長期記憶の現在のシステムを強化した。
提案したメモリに実装されたアナログ学習手法は,多様な新しい概念を迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2022-10-21T04:39:07Z) - AIGenC: An AI generalisation model via creativity [1.933681537640272]
本稿では,創造性に関する認知理論に触発された計算モデル(AIGenC)を紹介する。
人工エージェントが変換可能な表現を学習、使用、生成するために必要なコンポーネントを配置する。
本稿では, 人工エージェントの配当効率を向上するモデルの有効性について論じる。
論文 参考訳(メタデータ) (2022-05-19T17:43:31Z) - Evaluation of Self-taught Learning-based Representations for Facial
Emotion Recognition [62.30451764345482]
この研究は、顔の感情認識のための自己学習の概念を通じて得られた教師なし表現を生成するための様々な戦略を記述する。
このアイデアは、オートエンコーダの初期化、アーキテクチャ、トレーニングデータを変化させることで、多様性を促進する補完的な表現を作ることである。
Jaffe と Cohn-Kanade のデータセットに対する残余のサブジェクトアウトプロトコルによる実験結果から,提案した多種多様な表現に基づく FER 手法が最先端のアプローチと好適に比較できることが示唆された。
論文 参考訳(メタデータ) (2022-04-26T22:48:15Z) - Intent Contrastive Learning for Sequential Recommendation [86.54439927038968]
ユーザの意図を表現するために潜伏変数を導入し,クラスタリングにより潜伏変数の分布関数を学習する。
我々は,学習意図を対照的なSSLによってSRモデルに活用し,シーケンスのビューとそれに対応するインテントとの一致を最大化することを提案する。
4つの実世界のデータセットで実施された実験は、提案した学習パラダイムの優位性を示している。
論文 参考訳(メタデータ) (2022-02-05T09:24:13Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
本稿では,ニューラル生成符号化とホログラフィック連想記憶に基づく認知モデルの実装について述べる。
提案システムは,多様なタスクから継続的に学習し,大規模に人的パフォーマンスをモデル化するエージェントを開発するための基盤となる。
論文 参考訳(メタデータ) (2021-05-15T22:55:23Z) - Learning to Actively Reduce Memory Requirements for Robot Control Tasks [4.302265156822829]
ロボットを制御するための最先端のアプローチは、しばしばタスクに過剰にリッチなメモリ表現を使用するか、手作りのトリックをメモリ効率に頼っている。
この研究は、メモリ表現とポリシーを共同で合成するための一般的なアプローチを提供する。
論文 参考訳(メタデータ) (2020-08-17T16:20:13Z) - Characterizing an Analogical Concept Memory for Architectures
Implementing the Common Model of Cognition [1.468003557277553]
そこで我々は,Soar の新たなアナログ概念メモリを提案し,宣言的長期記憶の現在のシステムを強化した。
提案したメモリに実装されたアナログ学習手法は,多様な新しい概念を迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2020-06-02T21:54:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。