論文の概要: Put CASH on Bandits: A Max K-Armed Problem for Automated Machine Learning
- arxiv url: http://arxiv.org/abs/2505.05226v1
- Date: Thu, 08 May 2025 13:18:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.895544
- Title: Put CASH on Bandits: A Max K-Armed Problem for Automated Machine Learning
- Title(参考訳): 帯域にCASHを置く: 機械学習のための最大KArmed問題
- Authors: Amir Rezaei Balef, Claire Vernade, Katharina Eggensperger,
- Abstract要約: MaxUCBは、異なるモデルクラスの探索をオフにするための、最大$k$武器付きバンディットメソッドである。
提案手法を4つの標準AutoMLベンチマークで理論的,実証的に評価し,従来の手法よりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 7.42043364090769
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Combined Algorithm Selection and Hyperparameter optimization (CASH) is a challenging resource allocation problem in the field of AutoML. We propose MaxUCB, a max $k$-armed bandit method to trade off exploring different model classes and conducting hyperparameter optimization. MaxUCB is specifically designed for the light-tailed and bounded reward distributions arising in this setting and, thus, provides an efficient alternative compared to classic max $k$-armed bandit methods assuming heavy-tailed reward distributions. We theoretically and empirically evaluate our method on four standard AutoML benchmarks, demonstrating superior performance over prior approaches.
- Abstract(参考訳): アルゴリズム選択とハイパーパラメータ最適化(CASH)はAutoML分野における資源割り当ての問題である。
我々は、異なるモデルクラスを探索し、ハイパーパラメータ最適化を行うために、最大$k$-armed bandit法であるMaxUCBを提案する。
MaxUCBは、この設定で生じる光尾と有界の報酬分布に特化して設計されており、重尾の報酬分布を仮定する古典的なmax $k$-armed bandit法と比較して効率的な代替手段を提供する。
提案手法を4つの標準AutoMLベンチマークで理論的,実証的に評価し,従来の手法よりも優れた性能を示した。
関連論文リスト
- Continuous K-Max Bandits [54.21533414838677]
我々は、連続的な結果分布と弱い値-インデックスフィードバックを持つ、$K$-Maxのマルチアームバンディット問題について検討する。
この設定は、レコメンデーションシステム、分散コンピューティング、サーバスケジューリングなどにおいて重要なアプリケーションをキャプチャします。
我々の重要な貢献は、適応的な離散化とバイアス補正された信頼境界を組み合わせた計算効率の良いアルゴリズムDCK-UCBである。
論文 参考訳(メタデータ) (2025-02-19T06:37:37Z) - Adaptive $Q$-Network: On-the-fly Target Selection for Deep Reinforcement Learning [18.579378919155864]
我々は、追加のサンプルを必要としない最適化手順の非定常性を考慮するために、Adaptive $Q$Network (AdaQN)を提案する。
AdaQNは理論上は健全で、MuJoCo制御問題やAtari 2600のゲームで実証的に検証されている。
論文 参考訳(メタデータ) (2024-05-25T11:57:43Z) - Implicitly normalized forecaster with clipping for linear and non-linear
heavy-tailed multi-armed bandits [85.27420062094086]
Implicitly Normalized Forecaster (INF) は、敵対的マルチアームバンディット(MAB)問題に対する最適解であると考えられている。
重み付き設定のMAB問題に対するクリッピング(INFclip)を用いたINFの新バージョン"Implicitly Normalized Forecaster"を提案する。
INFclipは線形重み付きMAB問題に対して最適であり、非線形問題に対して有効であることを示す。
論文 参考訳(メタデータ) (2023-05-11T12:00:43Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
公正な予測モデルを得るための直接的なアプローチは、公正な制約の下で予測性能を最適化することでモデルを訓練することである。
フェアネスを考慮した機械学習モデルのトレーニング問題を,AUCに基づくフェアネス制約のクラスを対象とする最適化問題として定式化する。
フェアネス測定値の異なる実世界のデータに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-23T22:29:08Z) - Model Selection for Bayesian Autoencoders [25.619565817793422]
本稿では,オートエンコーダの出力と経験的データ分布との分散スライス-ワッサーシュタイン距離を最適化することを提案する。
我々のBAEは、フレキシブルなディリクレ混合モデルを潜在空間に適合させることにより、生成モデルに変換する。
我々は,教師なしの学習課題に対する膨大な実験的キャンペーンを質的かつ定量的に評価し,先行研究が重要となる小規模データ体制において,我々のアプローチが最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2021-06-11T08:55:00Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Output-Weighted Sampling for Multi-Armed Bandits with Extreme Payoffs [11.1546439770774]
極度のペイオフを伴うバンディット問題におけるオンライン意思決定のための新しいタイプの獲得機能を提示する。
我々は,最も関連性が高いと考えられる盗賊を探索する新しいタイプの上位信頼境界(UCB)取得関数を定式化する。
論文 参考訳(メタデータ) (2021-02-19T18:36:03Z) - Efficient Automatic CASH via Rising Bandits [37.09843193057032]
CASH問題に対する交互最適化フレームワークを提案する。
また、CASHのアルゴリズム選択をモデル化するために、CASH指向のマルチアーマドバンド(MAB)バリアントであるRising Banditsも紹介します。
このフレームワークは、HPO問題を解決するBOとアルゴリズムの選択を加速するMABの両方の利点を利用することができる。
論文 参考訳(メタデータ) (2020-12-08T11:29:57Z) - Reward Biased Maximum Likelihood Estimation for Reinforcement Learning [13.820705458648233]
マルコフ連鎖の適応制御のためのRBMLE(Reward-Biased Maximum Likelihood Estimate)を提案した。
我々は、現在最先端のアルゴリズムと同様に、$mathcalO( log T)$が$T$の時間的水平線上で後悔していることを示します。
論文 参考訳(メタデータ) (2020-11-16T06:09:56Z) - DORB: Dynamically Optimizing Multiple Rewards with Bandits [101.68525259222164]
政策に基づく強化学習は、言語生成タスクにおいて、微分不可能な評価指標を最適化するための有望なアプローチであることが証明されている。
We use the Exp3 algorithm for bandit and formulate two approach for bandit rewards: (1) Single Multi-reward Bandit (SM-Bandit), (2) Hierarchical Multi-reward Bandit (HM-Bandit)
我々は,2つの重要なNLGタスクにおいて,様々な自動計測と人的評価を通じて,我々のアプローチの有効性を実証的に示す。
論文 参考訳(メタデータ) (2020-11-15T21:57:47Z) - Thompson Sampling Algorithms for Mean-Variance Bandits [97.43678751629189]
我々は平均分散MABのためのトンプソンサンプリング型アルゴリズムを開発した。
我々はまた、ガウシアンとベルヌーイの盗賊に対する包括的後悔の分析も提供する。
我々のアルゴリズムは、全てのリスク許容度に対して既存のLCBベースのアルゴリズムを著しく上回っている。
論文 参考訳(メタデータ) (2020-02-01T15:33:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。