Time of the Flight of the Gaussians: Optimizing Depth Indirectly in Dynamic Radiance Fields
- URL: http://arxiv.org/abs/2505.05356v1
- Date: Thu, 08 May 2025 15:45:53 GMT
- Title: Time of the Flight of the Gaussians: Optimizing Depth Indirectly in Dynamic Radiance Fields
- Authors: Runfeng Li, Mikhail Okunev, Zixuan Guo, Anh Ha Duong, Christian Richardt, Matthew O'Toole, James Tompkin,
- Abstract summary: We present a method to reconstruct dynamic scenes from monocular continuous-wave timeof-flight (C-ToF) cameras.<n>The method achieves similar or better accuracy than neural approaches and is 100x faster.
- Score: 20.363006625978787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method to reconstruct dynamic scenes from monocular continuous-wave time-of-flight (C-ToF) cameras using raw sensor samples that achieves similar or better accuracy than neural volumetric approaches and is 100x faster. Quickly achieving high-fidelity dynamic 3D reconstruction from a single viewpoint is a significant challenge in computer vision. In C-ToF radiance field reconstruction, the property of interest-depth-is not directly measured, causing an additional challenge. This problem has a large and underappreciated impact upon the optimization when using a fast primitive-based scene representation like 3D Gaussian splatting, which is commonly used with multi-view data to produce satisfactory results and is brittle in its optimization otherwise. We incorporate two heuristics into the optimization to improve the accuracy of scene geometry represented by Gaussians. Experimental results show that our approach produces accurate reconstructions under constrained C-ToF sensing conditions, including for fast motions like swinging baseball bats. https://visual.cs.brown.edu/gftorf
Related papers
- Pseudo Depth Meets Gaussian: A Feed-forward RGB SLAM Baseline [64.42938561167402]
We propose an online 3D reconstruction method using 3D Gaussian-based SLAM, combined with a feed-forward recurrent prediction module.<n>This approach replaces slow test-time optimization with fast network inference, significantly improving tracking speed.<n>Our method achieves performance on par with the state-of-the-art SplaTAM, while reducing tracking time by more than 90%.
arXiv Detail & Related papers (2025-08-06T16:16:58Z) - RobustSplat: Decoupling Densification and Dynamics for Transient-Free 3DGS [79.15416002879239]
3D Gaussian Splatting has gained significant attention for its real-time, photo-realistic rendering in novel-view synthesis and 3D modeling.<n>Existing methods struggle with accurately modeling scenes affected by transient objects, leading to artifacts in the rendered images.<n>We propose RobustSplat, a robust solution based on two critical designs.
arXiv Detail & Related papers (2025-06-03T11:13:48Z) - QuickSplat: Fast 3D Surface Reconstruction via Learned Gaussian Initialization [69.50126552763157]
Surface reconstruction is fundamental to computer vision and graphics, enabling applications in 3D modeling, mixed reality, robotics, and more.<n>Existing approaches based on rendering obtain promising results, but optimize on a per-scene basis, resulting in a slow optimization that can struggle to model textureless regions.<n>We introduce QuickSplat, which learns data-driven priors to generate dense initializations for 2D gaussian splatting optimization of large-scale indoor scenes.
arXiv Detail & Related papers (2025-05-08T18:43:26Z) - 4D Gaussian Splatting with Scale-aware Residual Field and Adaptive Optimization for Real-time Rendering of Temporally Complex Dynamic Scenes [19.24815625343669]
SaRO-GS is a novel dynamic scene representation capable of achieving real-time rendering.<n>To handle temporally complex dynamic scenes, we introduce a Scale-aware Residual Field.<n>Our method has demonstrated state-of-the-art performance.
arXiv Detail & Related papers (2024-12-09T08:44:19Z) - InstantSplat: Sparse-view Gaussian Splatting in Seconds [91.77050739918037]
We introduce InstantSplat, a novel approach for addressing sparse-view 3D scene reconstruction at lightning-fast speed.<n>InstantSplat employs a self-supervised framework that optimize 3D scene representation and camera poses.<n>It achieves an acceleration of over 30x in reconstruction and improves visual quality (SSIM) from 0.3755 to 0.7624 compared to traditional SfM with 3D-GS.
arXiv Detail & Related papers (2024-03-29T17:29:58Z) - CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians [18.42203035154126]
We introduce a structured Gaussian representation that can be controlled in 2D image space.<n>We then constraint the Gaussians, in particular their position, and prevent them from moving independently during optimization.<n>We demonstrate significant improvements compared to the state-of-the-art sparse-view NeRF-based approaches on a variety of scenes.
arXiv Detail & Related papers (2024-03-28T15:27:13Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - GauFRe: Gaussian Deformation Fields for Real-time Dynamic Novel View Synthesis [16.733855781461802]
Implicit deformable representations commonly model motion with a canonical space and time-dependent deformation field.<n>GauFRe, uses a forward-warping deformation to explicitly model non-rigid transformations of scene geometry.<n>Experiments show our method achieves competitive results and higher efficiency than previous state-of-the-art NeRF and Gaussian-based methods.
arXiv Detail & Related papers (2023-12-18T18:59:03Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.