Reasoning Models Don't Always Say What They Think
- URL: http://arxiv.org/abs/2505.05410v1
- Date: Thu, 08 May 2025 16:51:43 GMT
- Title: Reasoning Models Don't Always Say What They Think
- Authors: Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman, Arushi Somani, Peter Hase, Misha Wagner, Fabien Roger, Vlad Mikulik, Samuel R. Bowman, Jan Leike, Jared Kaplan, Ethan Perez,
- Abstract summary: Chain-of-thought (CoT) allows monitoring a model's intentions and reasoning processes.<n>We evaluate CoT faithfulness of state-of-the-art reasoning models across 6 reasoning hints presented in prompts.
- Score: 48.05987314492555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chain-of-thought (CoT) offers a potential boon for AI safety as it allows monitoring a model's CoT to try to understand its intentions and reasoning processes. However, the effectiveness of such monitoring hinges on CoTs faithfully representing models' actual reasoning processes. We evaluate CoT faithfulness of state-of-the-art reasoning models across 6 reasoning hints presented in the prompts and find: (1) for most settings and models tested, CoTs reveal their usage of hints in at least 1% of examples where they use the hint, but the reveal rate is often below 20%, (2) outcome-based reinforcement learning initially improves faithfulness but plateaus without saturating, and (3) when reinforcement learning increases how frequently hints are used (reward hacking), the propensity to verbalize them does not increase, even without training against a CoT monitor. These results suggest that CoT monitoring is a promising way of noticing undesired behaviors during training and evaluations, but that it is not sufficient to rule them out. They also suggest that in settings like ours where CoT reasoning is not necessary, test-time monitoring of CoTs is unlikely to reliably catch rare and catastrophic unexpected behaviors.
Related papers
- When Chain of Thought is Necessary, Language Models Struggle to Evade Monitors [10.705880888253501]
Chain-of-thought (CoT) monitoring is an appealing AI safety defense.<n>Recent work on "unfaithfulness" has cast doubt on its reliability.<n>We argue the key property is not faithfulness but monitorability.
arXiv Detail & Related papers (2025-07-07T17:54:52Z) - Unveiling Confirmation Bias in Chain-of-Thought Reasoning [12.150655660758359]
Chain-of-thought (CoT) prompting has been widely adopted to enhance the reasoning capabilities of large language models (LLMs)<n>This work presents a novel perspective to understand CoT behavior through the lens of textitconfirmation bias in cognitive psychology.
arXiv Detail & Related papers (2025-06-14T01:30:17Z) - Prompting Science Report 2: The Decreasing Value of Chain of Thought in Prompting [0.0]
Chain-of-Thought (CoT) prompting is a technique that encourages a large language model to "think step by step"<n>The effectiveness of CoT prompting can vary greatly depending on the type of task and model.<n>For models designed with explicit reasoning capabilities, CoT prompting often results in only marginal, if any, gains in answer accuracy.
arXiv Detail & Related papers (2025-06-08T13:41:25Z) - Large language models can learn and generalize steganographic chain-of-thought under process supervision [5.173324198381261]
Chain-of-thought (CoT) reasoning provides insights into decision-making processes.<n>CoT monitoring can be used to reduce risks associated with deploying models.<n>We show that penalizing the use of specific strings within load-bearing reasoning traces causes models to substitute alternative strings.
arXiv Detail & Related papers (2025-06-02T17:45:15Z) - A Closer Look at Bias and Chain-of-Thought Faithfulness of Large (Vision) Language Models [53.18562650350898]
Chain-of-thought (CoT) reasoning enhances performance of large language models.<n>We present the first comprehensive study of CoT faithfulness in large vision-language models.
arXiv Detail & Related papers (2025-05-29T18:55:05Z) - CoThink: Token-Efficient Reasoning via Instruct Models Guiding Reasoning Models [56.40065909544213]
Large language models (LLMs) benefit from increased test-time compute, a phenomenon known as test-time scaling.<n>However, reasoning-optimized models often overthink even simple problems, producing excessively verbose outputs and leading to low token efficiency.<n>We identify two key causes of this verbosity: (1) reinforcement learning reduces the information density of forward reasoning, and (2) backward chain-of thought training encourages redundant and often unnecessary verification steps.
arXiv Detail & Related papers (2025-05-28T06:24:45Z) - Monitoring Reasoning Models for Misbehavior and the Risks of Promoting Obfuscation [56.102976602468615]
We show that we can monitor a frontier reasoning model, such as OpenAI o3-mini, for reward hacking in agentic coding environments.<n>We find that with too much optimization, agents learn obfuscated reward hacking, hiding their intent within the chain-of-thought.
arXiv Detail & Related papers (2025-03-14T23:50:34Z) - Improve Vision Language Model Chain-of-thought Reasoning [86.83335752119741]
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness.
We show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses.
arXiv Detail & Related papers (2024-10-21T17:00:06Z) - Training Nonlinear Transformers for Chain-of-Thought Inference: A Theoretical Generalization Analysis [82.51626700527837]
Chain-of-shift (CoT) is an efficient method that enables the reasoning ability of large language models by augmenting the query using examples with multiple intermediate steps.
We show that despite the theoretical success of CoT, it fails to provide an accurate generalization when CoT does.
arXiv Detail & Related papers (2024-10-03T03:12:51Z) - Reasoning Beyond Bias: A Study on Counterfactual Prompting and Chain of Thought Reasoning [0.0]
We show that differences in learned regularities across answer options are predictive of model preferences and mirror human test-taking strategies.
We introduce two novel methods: Counterfactual Prompting with Chain of Thought (CoT) and Counterfactual Prompting with Agnostically Primed CoT (APriCoT)
Our results suggest that mitigating bias requires a "System-2" like process and that CoT reasoning is susceptible to confirmation bias under some prompting methodologies.
arXiv Detail & Related papers (2024-08-16T10:34:50Z) - Investigating Mysteries of CoT-Augmented Distillation [24.33660998599006]
Eliciting "chain of thought" (CoT) rationales has been shown to consistently improve LLM performance on tasks like question answering.
We ask: Why and how does this additional training signal help in model distillation?
arXiv Detail & Related papers (2024-06-20T17:15:46Z) - A Hopfieldian View-based Interpretation for Chain-of-Thought Reasoning [48.51969964676017]
Chain-of-Thought (CoT) holds a significant place in augmenting the reasoning performance for large language models.
We propose a Read-and-Control approach for controlling the accuracy of CoT.
arXiv Detail & Related papers (2024-06-18T04:07:13Z) - Measuring Faithfulness in Chain-of-Thought Reasoning [19.074147845029355]
Large language models (LLMs) perform better when they produce step-by-step, "Chain-of-Thought" (CoT) reasoning before answering a question.
It is unclear if the stated reasoning is a faithful explanation of the model's actual reasoning (i.e., its process for answering the question)
We investigate hypotheses for how CoT reasoning may be unfaithful, by examining how the model predictions change when we intervene on the CoT.
arXiv Detail & Related papers (2023-07-17T01:08:39Z) - Language Models Don't Always Say What They Think: Unfaithful
Explanations in Chain-of-Thought Prompting [43.458726163197824]
Large Language Models (LLMs) can achieve strong performance on many tasks by producing step-by-step reasoning before giving a final output.
We find that CoT explanations can systematically misrepresent the true reason for a model's prediction.
arXiv Detail & Related papers (2023-05-07T22:44:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.