Investigating Mysteries of CoT-Augmented Distillation
- URL: http://arxiv.org/abs/2406.14511v2
- Date: Fri, 27 Sep 2024 20:13:16 GMT
- Title: Investigating Mysteries of CoT-Augmented Distillation
- Authors: Somin Wadhwa, Silvio Amir, Byron C. Wallace,
- Abstract summary: Eliciting "chain of thought" (CoT) rationales has been shown to consistently improve LLM performance on tasks like question answering.
We ask: Why and how does this additional training signal help in model distillation?
- Score: 24.33660998599006
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Eliciting "chain of thought" (CoT) rationales -- sequences of token that convey a "reasoning" process -- has been shown to consistently improve LLM performance on tasks like question answering. More recent efforts have shown that such rationales can also be used for model distillation: Including CoT sequences (elicited from a large "teacher" model) in addition to target labels when fine-tuning a small student model yields (often substantial) improvements. In this work we ask: Why and how does this additional training signal help in model distillation? We perform ablations to interrogate this, and report some potentially surprising results. Specifically: (1) Placing CoT sequences after labels (rather than before) realizes consistently better downstream performance -- this means that no student "reasoning" is necessary at test time to realize gains. (2) When rationales are appended in this way, they need not be coherent reasoning sequences to yield improvements; performance increases are robust to permutations of CoT tokens, for example. In fact, (3) a small number of key tokens are sufficient to achieve improvements equivalent to those observed when full rationales are used in model distillation.
Related papers
- ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation [53.149817480019834]
Recent advancements in large reasoning models (LRMs) have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT)<n>We propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint during the token generation of the reasoning process.<n>Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well.
arXiv Detail & Related papers (2025-06-23T16:20:44Z) - Prompting Science Report 2: The Decreasing Value of Chain of Thought in Prompting [0.0]
Chain-of-Thought (CoT) prompting is a technique that encourages a large language model to "think step by step"<n>The effectiveness of CoT prompting can vary greatly depending on the type of task and model.<n>For models designed with explicit reasoning capabilities, CoT prompting often results in only marginal, if any, gains in answer accuracy.
arXiv Detail & Related papers (2025-06-08T13:41:25Z) - Knowing Before Saying: LLM Representations Encode Information About Chain-of-Thought Success Before Completion [34.582439587552656]
We investigate whether the success of a zero-shot Chain-of-Thought process can be predicted before completion.<n>We find that a probing classifier, based on LLM representations, performs well even before a single token is generated.
arXiv Detail & Related papers (2025-05-30T08:54:28Z) - Unveiling Reasoning Thresholds in Language Models: Scaling, Fine-Tuning, and Interpretability through Attention Maps [3.8936716676293917]
This study investigates the in-context learning capabilities of various decoder-only transformer-based language models with different model sizes and training data.
We identify a critical parameter threshold (1.6 billion), beyond which reasoning performance improves significantly in tasks such as commonsense reasoning in multiple-choice question answering and deductive reasoning.
arXiv Detail & Related papers (2025-02-21T00:48:32Z) - Metastable Dynamics of Chain-of-Thought Reasoning: Provable Benefits of Search, RL and Distillation [40.861314212279474]
We study inference-time compute by viewing chain-of-thought (CoT) generation as a metastable Markov process.
We prove that implementing a search protocol that rewards sparse edges improves CoT by decreasing the expected number of steps to reach different clusters.
We also show that the information gained by search can be utilized to obtain a better reasoning model.
arXiv Detail & Related papers (2025-02-02T18:19:14Z) - Improve Vision Language Model Chain-of-thought Reasoning [86.83335752119741]
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness.
We show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses.
arXiv Detail & Related papers (2024-10-21T17:00:06Z) - Training Nonlinear Transformers for Chain-of-Thought Inference: A Theoretical Generalization Analysis [82.51626700527837]
Chain-of-shift (CoT) is an efficient method that enables the reasoning ability of large language models by augmenting the query using examples with multiple intermediate steps.
We show that despite the theoretical success of CoT, it fails to provide an accurate generalization when CoT does.
arXiv Detail & Related papers (2024-10-03T03:12:51Z) - Training Chain-of-Thought via Latent-Variable Inference [30.21067593018967]
Large language models (LLMs) solve problems more accurately and interpretably when instructed to work out the answer step by step using a chain-of-thought'' prompt.
Naively combining CoT with supervised tuning requires supervision not just of the correct answers, but also of detailed rationales that lead to those answers.
We propose a fine-tuning strategy that tries to maximize the emphmarginal log-likelihood of generating a correct answer using CoT prompting.
arXiv Detail & Related papers (2023-11-28T17:47:32Z) - Analyzing Chain-of-Thought Prompting in Large Language Models via
Gradient-based Feature Attributions [10.621564997491808]
Chain-of-thought (CoT) prompting has been shown to empirically improve the accuracy of large language models.
We investigate whether CoT prompting affects the relative importances they assign to particular input tokens.
Our results indicate that while CoT prompting does not increase the magnitude of saliency scores attributed to semantically relevant tokens in the prompt, it increases the robustness of saliency scores to question perturbations and variations in model output.
arXiv Detail & Related papers (2023-07-25T08:51:30Z) - SCOTT: Self-Consistent Chain-of-Thought Distillation [68.40232422158569]
Large language models (LMs) generate free-text rationales for their predictions via chain-of-thought prompting.
We propose a faithful knowledge distillation method to learn a small, self-consistent CoT model from a teacher model that is orders of magnitude larger.
To ensure faithful distillation, we use the teacher-generated rationales to learn a student LM with a counterfactual reasoning objective.
arXiv Detail & Related papers (2023-05-03T03:47:00Z) - Tokenization Consistency Matters for Generative Models on Extractive NLP
Tasks [54.306234256074255]
We identify the issue of tokenization inconsistency that is commonly neglected in training generative models.
This issue damages the extractive nature of these tasks after the input and output are tokenized inconsistently.
We show that, with consistent tokenization, the model performs better in both in-domain and out-of-domain datasets.
arXiv Detail & Related papers (2022-12-19T23:33:21Z) - Referee: Reference-Free Sentence Summarization with Sharper
Controllability through Symbolic Knowledge Distillation [72.70058049274664]
We present Referee, a novel framework for sentence summarization that can be trained reference-free (i.e., requiring no gold summaries for supervision)
Our work is the first to demonstrate that reference-free, controlled sentence summarization is feasible via the conceptual framework of Symbolic Knowledge Distillation.
arXiv Detail & Related papers (2022-10-25T07:07:54Z) - Self-Distillation from the Last Mini-Batch for Consistency
Regularization [14.388479145440636]
We propose an efficient and reliable self-distillation framework, named Self-Distillation from Last Mini-Batch (DLB)
Our proposed mechanism guides the training stability and consistency, resulting in robustness to label noise.
Experimental results on three classification benchmarks illustrate that our approach can consistently outperform state-of-the-art self-distillation approaches.
arXiv Detail & Related papers (2022-03-30T09:50:24Z) - Pre-training Is (Almost) All You Need: An Application to Commonsense
Reasoning [61.32992639292889]
Fine-tuning of pre-trained transformer models has become the standard approach for solving common NLP tasks.
We introduce a new scoring method that casts a plausibility ranking task in a full-text format.
We show that our method provides a much more stable training phase across random restarts.
arXiv Detail & Related papers (2020-04-29T10:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.