Mogao: An Omni Foundation Model for Interleaved Multi-Modal Generation
- URL: http://arxiv.org/abs/2505.05472v2
- Date: Sun, 11 May 2025 18:47:18 GMT
- Title: Mogao: An Omni Foundation Model for Interleaved Multi-Modal Generation
- Authors: Chao Liao, Liyang Liu, Xun Wang, Zhengxiong Luo, Xinyu Zhang, Wenliang Zhao, Jie Wu, Liang Li, Zhi Tian, Weilin Huang,
- Abstract summary: We present Mogao, a unified framework that enables interleaved multi-modal generation through a causal approach.<n>Mogoo integrates a set of key technical improvements in architecture design, including a deep-fusion design, dual vision encoders, interleaved rotary position embeddings, and multi-modal classifier-free guidance.<n>Experiments show that Mogao achieves state-of-the-art performance in multi-modal understanding and text-to-image generation, but also excels in producing high-quality, coherent interleaved outputs.
- Score: 54.588082888166504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent progress in unified models for image understanding and generation has been impressive, yet most approaches remain limited to single-modal generation conditioned on multiple modalities. In this paper, we present Mogao, a unified framework that advances this paradigm by enabling interleaved multi-modal generation through a causal approach. Mogao integrates a set of key technical improvements in architecture design, including a deep-fusion design, dual vision encoders, interleaved rotary position embeddings, and multi-modal classifier-free guidance, which allow it to harness the strengths of both autoregressive models for text generation and diffusion models for high-quality image synthesis. These practical improvements also make Mogao particularly effective to process interleaved sequences of text and images arbitrarily. To further unlock the potential of unified models, we introduce an efficient training strategy on a large-scale, in-house dataset specifically curated for joint text and image generation. Extensive experiments show that Mogao not only achieves state-of-the-art performance in multi-modal understanding and text-to-image generation, but also excels in producing high-quality, coherent interleaved outputs. Its emergent capabilities in zero-shot image editing and compositional generation highlight Mogao as a practical omni-modal foundation model, paving the way for future development and scaling the unified multi-modal systems.
Related papers
- Muddit: Liberating Generation Beyond Text-to-Image with a Unified Discrete Diffusion Model [87.23753533733046]
We introduce Muddit, a unified discrete diffusion transformer that enables fast and parallel generation across both text and image modalities.<n>Unlike prior unified diffusion models trained from scratch, Muddit integrates strong visual priors from a pretrained text-to-image backbone with a lightweight text decoder.
arXiv Detail & Related papers (2025-05-29T16:15:48Z) - FUDOKI: Discrete Flow-based Unified Understanding and Generation via Kinetic-Optimal Velocities [76.46448367752944]
multimodal large language models (MLLMs) unify visual understanding and image generation within a single framework.<n>Most existing MLLMs rely on autore (AR) architectures, which impose inherent limitations on future development.<n>We introduce FUDOKI, a unified multimodal model purely based on discrete flow matching.
arXiv Detail & Related papers (2025-05-26T15:46:53Z) - BLIP3-o: A Family of Fully Open Unified Multimodal Models-Architecture, Training and Dataset [140.1967962502411]
We introduce a novel approach that employs a diffusion transformer to generate semantically rich CLIP image features.<n>A sequential pretraining strategy for unified models-first training on image understanding and subsequently on image generation offers practical advantages.<n>Building on our innovative model design, training recipe, and datasets, we develop BLIP3-o, a suite of state-of-the-art unified multimodal models.
arXiv Detail & Related papers (2025-05-14T17:11:07Z) - Boosting Generative Image Modeling via Joint Image-Feature Synthesis [10.32324138962724]
We introduce a novel generative image modeling framework that seamlessly bridges the gap by leveraging a diffusion model to jointly model low-level image latents.<n>Our latent-semantic diffusion approach learns to generate coherent image-feature pairs from pure noise.<n>By eliminating the need for complex distillation objectives, our unified design simplifies training and unlocks a powerful new inference strategy: Representation Guidance.
arXiv Detail & Related papers (2025-04-22T17:41:42Z) - Unified Multimodal Discrete Diffusion [78.48930545306654]
Multimodal generative models that can understand and generate across multiple modalities are dominated by autoregressive (AR) approaches.<n>We explore discrete diffusion models as a unified generative formulation in the joint text and image domain.<n>We present the first Unified Multimodal Discrete Diffusion (UniDisc) model which is capable of jointly understanding and generating text and images.
arXiv Detail & Related papers (2025-03-26T17:59:51Z) - MINT: Multi-modal Chain of Thought in Unified Generative Models for Enhanced Image Generation [38.517814177255765]
We introduce MINT, an innovative unified generative model, empowered with native multimodal chain of thought (MCoT) for enhanced image generation.<n>We propose an innovative MCoT training paradigm, a step-by-step approach to multimodal thinking, reasoning, and reflection specifically designed to enhance image generation.<n> MINT has been validated to exhibit superior performance across multiple benchmarks for text-to-image (T2I) and image-to-text (I2T) tasks.
arXiv Detail & Related papers (2025-03-03T08:36:16Z) - Dual Diffusion for Unified Image Generation and Understanding [32.7554623473768]
We propose a large-scale and fully end-to-end diffusion model for multi-modal understanding and generation.<n>We leverage a cross-modal maximum likelihood estimation framework that simultaneously trains the conditional likelihoods of both images and text jointly.<n>Our model attained competitive performance compared to recent unified image understanding and generation models.
arXiv Detail & Related papers (2024-12-31T05:49:00Z) - Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis [62.57727062920458]
We present Meissonic, which elevates non-autoregressive masked image modeling (MIM) text-to-image to a level comparable with state-of-the-art diffusion models like SDXL.<n>We leverage high-quality training data, integrate micro-conditions informed by human preference scores, and employ feature compression layers.<n>Our model not only matches but often exceeds the performance of existing models like SDXL in generating high-quality, high-resolution images.
arXiv Detail & Related papers (2024-10-10T17:59:17Z) - Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining [49.04935506942202]
Lumina-mGPT is a family of multimodal autoregressive models capable of various vision and language tasks.<n>By initializing from multimodal Generative PreTraining (mGPT), we demonstrate that decoder-only Autoregressive (AR) model can achieve image generation performance comparable to modern diffusion models.
arXiv Detail & Related papers (2024-08-05T17:46:53Z) - Jointly Training Large Autoregressive Multimodal Models [37.32912103934043]
We present the Joint Autoregressive Mixture (JAM) framework, a modular approach that systematically fuses existing text and image generation models.
We also introduce a specialized, data-efficient instruction-tuning strategy, tailored for mixed-modal generation tasks.
Our final instruct-tuned model demonstrates unparalleled performance in generating high-quality multimodal outputs.
arXiv Detail & Related papers (2023-09-27T10:40:23Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
Text-to-image generation (TTI) refers to the usage of models that could process text input and generate high fidelity images based on text descriptions.
Diffusion models are one prominent type of generative model used for the generation of images through the systematic introduction of noises with repeating steps.
In the era of large models, scaling up model size and the integration with large language models have further improved the performance of TTI models.
arXiv Detail & Related papers (2023-09-02T03:27:20Z) - DiffBlender: Scalable and Composable Multimodal Text-to-Image Diffusion
Models [10.744438740060458]
We aim to extend the capabilities of diffusion-based text-to-image (T2I) generation models by incorporating diverse modalities beyond textual description.
We thus design a multimodal T2I diffusion model, coined as DiffBlender, by separating the channels of conditions into three types.
The unique architecture of DiffBlender facilitates adding new input modalities, pioneering a scalable framework for conditional image generation.
arXiv Detail & Related papers (2023-05-24T14:31:20Z) - Unified Discrete Diffusion for Simultaneous Vision-Language Generation [78.21352271140472]
We present a unified multimodal generation model that can conduct both the "modality translation" and "multi-modality generation" tasks.
Specifically, we unify the discrete diffusion process for multimodal signals by proposing a unified transition matrix.
Our proposed method can perform comparably to the state-of-the-art solutions in various generation tasks.
arXiv Detail & Related papers (2022-11-27T14:46:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.