SVAD: From Single Image to 3D Avatar via Synthetic Data Generation with Video Diffusion and Data Augmentation
- URL: http://arxiv.org/abs/2505.05475v1
- Date: Thu, 08 May 2025 17:59:58 GMT
- Title: SVAD: From Single Image to 3D Avatar via Synthetic Data Generation with Video Diffusion and Data Augmentation
- Authors: Yonwoo Choi,
- Abstract summary: High-quality animatable 3D human avatars from a single image remains a significant challenge in computer vision.<n>We present SVAD, a novel approach that addresses these limitations by leveraging complementary strengths of existing techniques.<n>Our method generates synthetic training data through video diffusion, enhances it with identity preservation and image restoration modules, and utilizes this refined data to train 3DGS avatars.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Creating high-quality animatable 3D human avatars from a single image remains a significant challenge in computer vision due to the inherent difficulty of reconstructing complete 3D information from a single viewpoint. Current approaches face a clear limitation: 3D Gaussian Splatting (3DGS) methods produce high-quality results but require multiple views or video sequences, while video diffusion models can generate animations from single images but struggle with consistency and identity preservation. We present SVAD, a novel approach that addresses these limitations by leveraging complementary strengths of existing techniques. Our method generates synthetic training data through video diffusion, enhances it with identity preservation and image restoration modules, and utilizes this refined data to train 3DGS avatars. Comprehensive evaluations demonstrate that SVAD outperforms state-of-the-art (SOTA) single-image methods in maintaining identity consistency and fine details across novel poses and viewpoints, while enabling real-time rendering capabilities. Through our data augmentation pipeline, we overcome the dependency on dense monocular or multi-view training data typically required by traditional 3DGS approaches. Extensive quantitative, qualitative comparisons show our method achieves superior performance across multiple metrics against baseline models. By effectively combining the generative power of diffusion models with both the high-quality results and rendering efficiency of 3DGS, our work establishes a new approach for high-fidelity avatar generation from a single image input.
Related papers
- TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models [69.0220314849478]
TripoSG is a new streamlined shape diffusion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images.<n>The resulting 3D shapes exhibit enhanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input images.<n>To foster progress and innovation in the field of 3D generation, we will make our model publicly available.
arXiv Detail & Related papers (2025-02-10T16:07:54Z) - HuGDiffusion: Generalizable Single-Image Human Rendering via 3D Gaussian Diffusion [50.02316409061741]
HuGDiffusion is a learning pipeline to achieve novel view synthesis (NVS) of human characters from single-view input images.<n>We aim to generate the set of 3DGS attributes via a diffusion-based framework conditioned on human priors extracted from a single image.<n>Our HuGDiffusion shows significant performance improvements over the state-of-the-art methods.
arXiv Detail & Related papers (2025-01-25T01:00:33Z) - Flex3D: Feed-Forward 3D Generation with Flexible Reconstruction Model and Input View Curation [61.040832373015014]
We propose Flex3D, a novel framework for generating high-quality 3D content from text, single images, or sparse view images.<n>We employ a fine-tuned multi-view image diffusion model and a video diffusion model to generate a pool of candidate views, enabling a rich representation of the target 3D object.<n>In the second stage, the curated views are fed into a Flexible Reconstruction Model (FlexRM), built upon a transformer architecture that can effectively process an arbitrary number of inputs.
arXiv Detail & Related papers (2024-10-01T17:29:43Z) - Scene123: One Prompt to 3D Scene Generation via Video-Assisted and Consistency-Enhanced MAE [22.072200443502457]
We propose Scene123, a 3D scene generation model that ensures realism and diversity through the video generation framework.
Specifically, we warp the input image (or an image generated from text) to simulate adjacent views, filling the invisible areas with the MAE model.
To further enhance the details and texture fidelity of generated views, we employ a GAN-based Loss against images derived from the input image through the video generation model.
arXiv Detail & Related papers (2024-08-10T08:09:57Z) - Bootstrap3D: Improving Multi-view Diffusion Model with Synthetic Data [80.92268916571712]
A critical bottleneck is the scarcity of high-quality 3D objects with detailed captions.
We propose Bootstrap3D, a novel framework that automatically generates an arbitrary quantity of multi-view images.
We have generated 1 million high-quality synthetic multi-view images with dense descriptive captions.
arXiv Detail & Related papers (2024-05-31T17:59:56Z) - VideoMV: Consistent Multi-View Generation Based on Large Video Generative Model [34.35449902855767]
Two fundamental questions are what data we use for training and how to ensure multi-view consistency.
We propose a dense consistent multi-view generation model that is fine-tuned from off-the-shelf video generative models.
Our approach can generate 24 dense views and converges much faster in training than state-of-the-art approaches.
arXiv Detail & Related papers (2024-03-18T17:48:15Z) - Envision3D: One Image to 3D with Anchor Views Interpolation [18.31796952040799]
We present Envision3D, a novel method for efficiently generating high-quality 3D content from a single image.
It is capable of generating high-quality 3D content in terms of texture and geometry, surpassing previous image-to-3D baseline methods.
arXiv Detail & Related papers (2024-03-13T18:46:33Z) - Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views [47.215089338101066]
We present Sparse3D, a novel 3D reconstruction method tailored for sparse view inputs.
Our approach distills robust priors from a multiview-consistent diffusion model to refine a neural radiance field.
By tapping into 2D priors from powerful image diffusion models, our integrated model consistently delivers high-quality results.
arXiv Detail & Related papers (2023-08-27T11:52:00Z) - IT3D: Improved Text-to-3D Generation with Explicit View Synthesis [71.68595192524843]
This study presents a novel strategy that leverages explicitly synthesized multi-view images to address these issues.
Our approach involves the utilization of image-to-image pipelines, empowered by LDMs, to generate posed high-quality images.
For the incorporated discriminator, the synthesized multi-view images are considered real data, while the renderings of the optimized 3D models function as fake data.
arXiv Detail & Related papers (2023-08-22T14:39:17Z) - StyleAvatar3D: Leveraging Image-Text Diffusion Models for High-Fidelity
3D Avatar Generation [103.88928334431786]
We present a novel method for generating high-quality, stylized 3D avatars.
We use pre-trained image-text diffusion models for data generation and a Generative Adversarial Network (GAN)-based 3D generation network for training.
Our approach demonstrates superior performance over current state-of-the-art methods in terms of visual quality and diversity of the produced avatars.
arXiv Detail & Related papers (2023-05-30T13:09:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.