An Overview of the Prospects and Challenges of Using Artificial Intelligence for Energy Management Systems in Microgrids
- URL: http://arxiv.org/abs/2505.05498v2
- Date: Tue, 13 May 2025 06:44:22 GMT
- Title: An Overview of the Prospects and Challenges of Using Artificial Intelligence for Energy Management Systems in Microgrids
- Authors: Noor ul Misbah Khanum, Hayssam Dahrouj, Ramesh C. Bansal, Hissam Mouayad Tawfik,
- Abstract summary: This paper highlights the benefits of enabling AI-based methodologies in the energy management systems of microgrids.<n>It also points out several future research directions that promise to spearhead AI-driven energy management systems.
- Score: 2.3699122378458704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Microgrids have emerged as a pivotal solution in the quest for a sustainable and energy-efficient future. While microgrids offer numerous advantages, they are also prone to issues related to reliably forecasting renewable energy demand and production, protecting against cyberattacks, controlling operational costs, optimizing power flow, and regulating the performance of energy management systems (EMS). Tackling these energy management challenges is essential to facilitate microgrid applications and seamlessly incorporate renewable energy resources. Artificial intelligence (AI) has recently demonstrated immense potential for optimizing energy management in microgrids, providing efficient and reliable solutions. This paper highlights the combined benefits of enabling AI-based methodologies in the energy management systems of microgrids by examining the applicability and efficiency of AI-based EMS in achieving specific technical and economic objectives. The paper also points out several future research directions that promise to spearhead AI-driven EMS, namely the development of self-healing microgrids, integration with blockchain technology, use of Internet of things (IoT), and addressing interpretability, data privacy, scalability, and the prospects to generative AI in the context of future AI-based EMS.
Related papers
- Joint Resource Management for Energy-efficient UAV-assisted SWIPT-MEC: A Deep Reinforcement Learning Approach [49.75068823009836]
6G Internet of Things (IoT) networks face challenges in remote areas and disaster scenarios where ground infrastructure is unavailable.<n>This paper proposes a novel aerial unmanned vehicle (UAV)-assisted computing (MEC) system enhanced by directional antennas to provide both computational and energy support for ground edge terminals.
arXiv Detail & Related papers (2025-05-06T06:46:19Z) - Advancing Generative Artificial Intelligence and Large Language Models for Demand Side Management with Internet of Electric Vehicles [52.43886862287498]
This paper explores the integration of large language models (LLMs) into energy management.<n>We propose an innovative solution that enhances LLMs with retrieval-augmented generation for automatic problem formulation, code generation, and customizing optimization.<n>We present a case study to demonstrate the effectiveness of our proposed solution in charging scheduling and optimization for electric vehicles.
arXiv Detail & Related papers (2025-01-26T14:31:03Z) - An Extensive and Methodical Review of Smart Grids for Sustainable Energy Management-Addressing Challenges with AI, Renewable Energy Integration and Leading-edge Technologies [0.0]
Authors want to cover a number of topics, including smart grid benefits and components, technical developments, integrating renewable energy sources, using artificial intelligence and data analytics, cybersecurity, and privacy.<n>It is proposed to use AI and data analytics for better performance on the grid, reliability, and energy management.
arXiv Detail & Related papers (2025-01-23T23:59:19Z) - Power Plays: Unleashing Machine Learning Magic in Smart Grids [0.0]
Machine learning algorithms analyze vast amounts of data from smart meters, sensors, and other grid components to optimize energy distribution, forecast demand, and detect irregularities that could indicate potential failures.
The use of predictive models helps in anticipating equipment failures, thereby improving the reliability of the energy supply.
However, the deployment of these technologies also raises challenges related to data privacy, security, and the need for robust infrastructure.
arXiv Detail & Related papers (2024-10-20T15:39:08Z) - The Role of Intelligent Transportation Systems and Artificial
Intelligence in Energy Efficiency and Emission Reduction [4.847470451539329]
We explore the role of intelligent transportation systems (ITSs) and artificial intelligence (AI) in future enhanced energy and emission reduction (EER)
More specifically, we discuss the impact of sensors at different levels of ITS on improving EER.
We also investigate the potential networking connections in ITSs and provide an illustration of how they improve EER.
arXiv Detail & Related papers (2024-01-25T23:07:32Z) - Empowering Distributed Solutions in Renewable Energy Systems and Grid
Optimization [3.8979646385036175]
Machine learning (ML) advancements play a crucial role in empowering renewable energy sources and improving grid management.
The incorporation of big data and ML into smart grids offers several advantages, including heightened energy efficiency.
However, challenges like handling large data volumes, ensuring cybersecurity, and obtaining specialized expertise must be addressed.
arXiv Detail & Related papers (2023-10-24T02:45:16Z) - Intelligent Energy Management with IoT Framework in Smart Cities Using Intelligent Analysis: An Application of Machine Learning Methods for Complex Networks and Systems [0.1393076890612966]
We present a comprehensive review of Internet of Things-based frameworks aimed at smart city energy management.<n>We focus on systems that not only collect and store data but also support intelligent analysis for monitoring, controlling, and enhancing system efficiency.<n>The findings indicate that IoT-based frameworks offer significant potential to reduce energy consumption and environmental impact in smart buildings.
arXiv Detail & Related papers (2023-06-08T21:19:42Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.