Power Plays: Unleashing Machine Learning Magic in Smart Grids
- URL: http://arxiv.org/abs/2410.15423v1
- Date: Sun, 20 Oct 2024 15:39:08 GMT
- Title: Power Plays: Unleashing Machine Learning Magic in Smart Grids
- Authors: Abdur Rashid, Parag Biswas, abdullah al masum, MD Abdullah Al Nasim, Kishor Datta Gupta,
- Abstract summary: Machine learning algorithms analyze vast amounts of data from smart meters, sensors, and other grid components to optimize energy distribution, forecast demand, and detect irregularities that could indicate potential failures.
The use of predictive models helps in anticipating equipment failures, thereby improving the reliability of the energy supply.
However, the deployment of these technologies also raises challenges related to data privacy, security, and the need for robust infrastructure.
- Score: 0.0
- License:
- Abstract: The integration of machine learning into smart grid systems represents a transformative step in enhancing the efficiency, reliability, and sustainability of modern energy networks. By adding advanced data analytics, these systems can better manage the complexities of renewable energy integration, demand response, and predictive maintenance. Machine learning algorithms analyze vast amounts of data from smart meters, sensors, and other grid components to optimize energy distribution, forecast demand, and detect irregularities that could indicate potential failures. This enables more precise load balancing, reduces operational costs, and enhances the resilience of the grid against disturbances. Furthermore, the use of predictive models helps in anticipating equipment failures, thereby improving the reliability of the energy supply. As smart grids continue to evolve, the role of machine learning in managing decentralized energy sources and enabling real-time decision-making will become increasingly critical. However, the deployment of these technologies also raises challenges related to data privacy, security, and the need for robust infrastructure. Addressing these issues in this research authors will focus on realizing the full potential of smart grids, ensuring they meet the growing energy demands while maintaining a focus on sustainability and efficiency using Machine Learning techniques. Furthermore, this research will help determine the smart grid's essentiality with the aid of Machine Learning. Multiple ML algorithms have been integrated along with their pros and cons. The future scope of these algorithms are also integrated.
Related papers
- Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
We introduce a novel framework to detect instability in smart grids by employing only stable data.
It relies on a Generative Adversarial Network (GAN) where the generator is trained to create instability data that are used along with stable data to train the discriminator.
Our solution, tested on a dataset composed of real-world stable and unstable samples, achieve accuracy up to 97.5% in predicting grid stability and up to 98.9% in detecting adversarial attacks.
arXiv Detail & Related papers (2025-01-27T20:48:25Z) - An Extensive and Methodical Review of Smart Grids for Sustainable Energy Management-Addressing Challenges with AI, Renewable Energy Integration and Leading-edge Technologies [0.0]
Authors want to cover a number of topics, including smart grid benefits and components, technical developments, integrating renewable energy sources, using artificial intelligence and data analytics, cybersecurity, and privacy.
It is proposed to use AI and data analytics for better performance on the grid, reliability, and energy management.
arXiv Detail & Related papers (2025-01-23T23:59:19Z) - Distributed Multi-Head Learning Systems for Power Consumption Prediction [59.293903039988884]
We propose Distributed Multi-Head learning (DMH) systems for power consumption prediction in smart factories.
DMH systems are designed as distributed and split learning, reducing the client-to-server transmission cost.
DMH-E system reduces the error of the state-of-the-art systems by 14.5% to 24.0%.
arXiv Detail & Related papers (2025-01-21T13:46:23Z) - Empowering Distributed Solutions in Renewable Energy Systems and Grid
Optimization [3.8979646385036175]
Machine learning (ML) advancements play a crucial role in empowering renewable energy sources and improving grid management.
The incorporation of big data and ML into smart grids offers several advantages, including heightened energy efficiency.
However, challenges like handling large data volumes, ensuring cybersecurity, and obtaining specialized expertise must be addressed.
arXiv Detail & Related papers (2023-10-24T02:45:16Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets [74.51865676466056]
We show how graph convolutional networks and hyperstructures representation learning framework can be employed for accurate, reliable, and computationally efficient distribution grid planning.
Our numerical experiments show that the proposed Hyper-GCNNs approach yields substantial gains in computational efficiency.
arXiv Detail & Related papers (2022-11-14T01:29:09Z) - Vision Paper: Causal Inference for Interpretable and Robust Machine
Learning in Mobility Analysis [71.2468615993246]
Building intelligent transportation systems requires an intricate combination of artificial intelligence and mobility analysis.
The past few years have seen rapid development in transportation applications using advanced deep neural networks.
This vision paper emphasizes research challenges in deep learning-based mobility analysis that require interpretability and robustness.
arXiv Detail & Related papers (2022-10-18T17:28:58Z) - Robust, Deep, and Reinforcement Learning for Management of Communication
and Power Networks [6.09170287691728]
The present thesis first develops principled methods to make generic machine learning models robust against distributional uncertainties and adversarial data.
We then build on this robust framework to design robust semi-supervised learning over graph methods.
The second part of this thesis aspires to fully unleash the potential of next-generation wired and wireless networks.
arXiv Detail & Related papers (2022-02-08T05:49:06Z) - Artificial Intelligence Based Prognostic Maintenance of Renewable Energy
Systems: A Review of Techniques, Challenges, and Future Research Directions [3.1123064748686287]
Data Analytics and Machine Learning (ML) techniques are being used to increase the overall efficiency of these prognostic maintenance systems.
This paper provides an overview of the predictive/prognostic maintenance frameworks reported in the literature.
Being a key aspect of ML-based solutions, we also discuss some of the commonly used publicly available datasets in the domain.
arXiv Detail & Related papers (2021-04-20T11:41:00Z) - Smart Grid: A Survey of Architectural Elements, Machine Learning and
Deep Learning Applications and Future Directions [0.0]
Big data analytics, machine learning (ML), and deep learning (DL) plays a key role when it comes to the analysis of this massive amount of data and generation of valuable insights.
This paper explores and surveys the Smart grid architectural elements, machine learning, and deep learning-based applications and approaches in the context of the Smart grid.
arXiv Detail & Related papers (2020-10-16T01:40:24Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.