Image Restoration via Multi-domain Learning
- URL: http://arxiv.org/abs/2505.05504v1
- Date: Wed, 07 May 2025 04:14:51 GMT
- Title: Image Restoration via Multi-domain Learning
- Authors: Xingyu Jiang, Ning Gao, Xiuhui Zhang, Hongkun Dou, Shaowen Fu, Xiaoqing Zhong, Hongjue Li, Yue Deng,
- Abstract summary: We introduce a novel restoration framework, which integrates multi-domain learning into Transformer.<n>Specifically, in Token Mixer, we propose a Spatial-Wavelet-Fourier multi-domain structure that facilitates local-region-global multi-receptive field modeling.<n>In Feed-Forward Network, we incorporate multi-scale learning to fuse multi-domain features at different resolutions.
- Score: 8.909636477353695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to adverse atmospheric and imaging conditions, natural images suffer from various degradation phenomena. Consequently, image restoration has emerged as a key solution and garnered substantial attention. Although recent Transformer architectures have demonstrated impressive success across various restoration tasks, their considerable model complexity poses significant challenges for both training and real-time deployment. Furthermore, instead of investigating the commonalities among different degradations, most existing restoration methods focus on modifying Transformer under limited restoration priors. In this work, we first review various degradation phenomena under multi-domain perspective, identifying common priors. Then, we introduce a novel restoration framework, which integrates multi-domain learning into Transformer. Specifically, in Token Mixer, we propose a Spatial-Wavelet-Fourier multi-domain structure that facilitates local-region-global multi-receptive field modeling to replace vanilla self-attention. Additionally, in Feed-Forward Network, we incorporate multi-scale learning to fuse multi-domain features at different resolutions. Comprehensive experimental results across ten restoration tasks, such as dehazing, desnowing, motion deblurring, defocus deblurring, rain streak/raindrop removal, cloud removal, shadow removal, underwater enhancement and low-light enhancement, demonstrate that our proposed model outperforms state-of-the-art methods and achieves a favorable trade-off among restoration performance, parameter size, computational cost and inference latency. The code is available at: https://github.com/deng-ai-lab/SWFormer.
Related papers
- Global Modeling Matters: A Fast, Lightweight and Effective Baseline for Efficient Image Restoration [9.2933763571933]
Pyramid Wavelet-Fourier Network (PW-FNet) is an efficient restoration baseline for image restoration.<n>PW-FNet features multi-input multi-output structure to achieve multi-scale and multi-frequency bands decomposition.<n>Experiments on tasks such as image deraining, raindrop removal, image super-resolution, motion deblurring, image dehazing and underwater/low-light enhancement demonstrate that PW-FNet not only surpasses state-of-the-art methods in restoration quality but also achieves superior efficiency.
arXiv Detail & Related papers (2025-07-18T05:15:04Z) - UniRes: Universal Image Restoration for Complex Degradations [53.74404005987783]
Real-world image restoration is hampered by diverse degradations stemming from varying capture conditions, capture devices and post-processing pipelines.<n>A simple yet flexible diffusionbased framework, named UniRes, is proposed to address such degradations in an end-to-end manner.<n>Our proposed method is evaluated on both complex-degradation and single-degradation image restoration datasets.
arXiv Detail & Related papers (2025-06-05T21:25:39Z) - UniCoRN: Latent Diffusion-based Unified Controllable Image Restoration Network across Multiple Degradations [4.892790389883125]
We propose UniCoRN, a unified image restoration approach capable of handling multiple degradation types simultaneously.<n>Specifically, we uncover the potential of low-level visual cues extracted from images in guiding a controllable diffusion model.<n>We also introduce MetaRestore, a metalens imaging benchmark containing images with multiple degradations and artifacts.
arXiv Detail & Related papers (2025-03-20T05:42:13Z) - UniUIR: Considering Underwater Image Restoration as An All-in-One Learner [49.35128836844725]
We propose a Universal Underwater Image Restoration method, termed as UniUIR.<n>To decouple degradation-specific issues and explore the inter-correlations among various degradations in UIR task, we designed the Mamba Mixture-of-Experts module.<n>This module extracts degradation prior information in both spatial and frequency domains, and adaptively selects the most appropriate task-specific prompts.
arXiv Detail & Related papers (2025-01-22T16:10:42Z) - UIR-LoRA: Achieving Universal Image Restoration through Multiple Low-Rank Adaptation [50.27688690379488]
Existing unified methods treat multi-degradation image restoration as a multi-task learning problem.
We propose a universal image restoration framework based on multiple low-rank adapters (LoRA) from multi-domain transfer learning.
Our framework leverages the pre-trained generative model as the shared component for multi-degradation restoration and transfers it to specific degradation image restoration tasks.
arXiv Detail & Related papers (2024-09-30T11:16:56Z) - Multi-Scale Representation Learning for Image Restoration with State-Space Model [13.622411683295686]
We propose a novel Multi-Scale State-Space Model-based (MS-Mamba) for efficient image restoration.
Our proposed method achieves new state-of-the-art performance while maintaining low computational complexity.
arXiv Detail & Related papers (2024-08-19T16:42:58Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - AdaIR: Adaptive All-in-One Image Restoration via Frequency Mining and Modulation [99.57024606542416]
We propose an adaptive all-in-one image restoration network based on frequency mining and modulation.
Our approach is motivated by the observation that different degradation types impact the image content on different frequency subbands.
The proposed model achieves adaptive reconstruction by accentuating the informative frequency subbands according to different input degradations.
arXiv Detail & Related papers (2024-03-21T17:58:14Z) - All-in-one Multi-degradation Image Restoration Network via Hierarchical
Degradation Representation [47.00239809958627]
We propose a novel All-in-one Multi-degradation Image Restoration Network (AMIRNet)
AMIRNet learns a degradation representation for unknown degraded images by progressively constructing a tree structure through clustering.
This tree-structured representation explicitly reflects the consistency and discrepancy of various distortions, providing a specific clue for image restoration.
arXiv Detail & Related papers (2023-08-06T04:51:41Z) - Restormer: Efficient Transformer for High-Resolution Image Restoration [118.9617735769827]
convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data.
Transformers have shown significant performance gains on natural language and high-level vision tasks.
Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks.
arXiv Detail & Related papers (2021-11-18T18:59:10Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.