Exploring the Feasibility of Multilingual Grammatical Error Correction with a Single LLM up to 9B parameters: A Comparative Study of 17 Models
- URL: http://arxiv.org/abs/2505.06004v1
- Date: Fri, 09 May 2025 12:35:26 GMT
- Title: Exploring the Feasibility of Multilingual Grammatical Error Correction with a Single LLM up to 9B parameters: A Comparative Study of 17 Models
- Authors: Dawid Wisniewski, Antoni Solarski, Artur Nowakowski,
- Abstract summary: We analyze the performance of 17 popular models used to correct grammatical issues in texts stated in English, German, Italian, and Swedish.<n>We list six models that improve grammatical correctness in all four languages and show that Gemma 9B is currently the best performing one for the languages considered.
- Score: 1.5812312064457867
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent language models can successfully solve various language-related tasks, and many understand inputs stated in different languages. In this paper, we explore the performance of 17 popular models used to correct grammatical issues in texts stated in English, German, Italian, and Swedish when using a single model to correct texts in all those languages. We analyze the outputs generated by these models, focusing on decreasing the number of grammatical errors while keeping the changes small. The conclusions drawn help us understand what problems occur among those models and which models can be recommended for multilingual grammatical error correction tasks. We list six models that improve grammatical correctness in all four languages and show that Gemma 9B is currently the best performing one for the languages considered.
Related papers
- Using Language Models to Disambiguate Lexical Choices in Translation [13.795280427753648]
In translation, a concept represented by a single word in a source language can have multiple variations in a target language.
We work with native speakers of nine languages to create DTAiLS, a dataset of 1,377 sentence pairs that exhibit cross-lingual concept variation when translating from English.
arXiv Detail & Related papers (2024-11-08T18:48:57Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
We evaluate 15 typologically diverse languages with existing and newly-created English and multilingual prompts.<n>We find that Llama Instruct and Mistral models exhibit high degrees of language confusion.<n>We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning.
arXiv Detail & Related papers (2024-06-28T17:03:51Z) - Evaluating Large Language Models on Controlled Generation Tasks [92.64781370921486]
We present an extensive analysis of various benchmarks including a sentence planning benchmark with different granularities.
After comparing large language models against state-of-the-start finetuned smaller models, we present a spectrum showing large language models falling behind, are comparable, or exceed the ability of smaller models.
arXiv Detail & Related papers (2023-10-23T03:48:24Z) - Crosslingual Generalization through Multitask Finetuning [80.8822603322471]
Multitask prompted finetuning (MTF) has been shown to help large language models generalize to new tasks in a zero-shot setting.
We apply MTF to the pretrained multilingual BLOOM and mT5 model families to produce finetuned variants called BLOOMZ and mT0.
We find finetuning large multilingual language models on English tasks with English prompts allows for task generalization to non-English languages.
arXiv Detail & Related papers (2022-11-03T13:19:32Z) - Multilingual BERT has an accent: Evaluating English influences on
fluency in multilingual models [23.62852626011989]
We show that grammatical structures in higher-resource languages bleed into lower-resource languages.
We show this bias via a novel method for comparing the fluency of multilingual models to the fluency of monolingual Spanish and Greek models.
arXiv Detail & Related papers (2022-10-11T17:06:38Z) - Few-shot Learning with Multilingual Language Models [66.49496434282564]
We train multilingual autoregressive language models on a balanced corpus covering a diverse set of languages.
Our largest model sets new state of the art in few-shot learning in more than 20 representative languages.
We present a detailed analysis of where the model succeeds and fails, showing in particular that it enables cross-lingual in-context learning.
arXiv Detail & Related papers (2021-12-20T16:52:35Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
Contextualized word representations from pretrained multilingual language models have become the de facto standard for addressing natural language tasks.
For languages rarely or never seen by these models, directly using such models often results in suboptimal representation or use of data.
arXiv Detail & Related papers (2021-06-16T18:13:55Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.