Multimodal Sentiment Analysis on CMU-MOSEI Dataset using Transformer-based Models
- URL: http://arxiv.org/abs/2505.06110v2
- Date: Tue, 15 Jul 2025 01:30:36 GMT
- Title: Multimodal Sentiment Analysis on CMU-MOSEI Dataset using Transformer-based Models
- Authors: Jugal Gajjar, Kaustik Ranaware,
- Abstract summary: This project performs multimodal sentiment analysis using the CMU-MOSEI dataset.<n>We use transformer-based models with early fusion to integrate text, audio, and visual modalities.<n>The model achieves strong performance, with 97.87% 7-class accuracy and a 0.9682 F1-score on the test set.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This project performs multimodal sentiment analysis using the CMU-MOSEI dataset, using transformer-based models with early fusion to integrate text, audio, and visual modalities. We employ BERT-based encoders for each modality, extracting embeddings that are concatenated before classification. The model achieves strong performance, with 97.87% 7-class accuracy and a 0.9682 F1-score on the test set, demonstrating the effectiveness of early fusion in capturing cross-modal interactions. The training utilized Adam optimization (lr=1e-4), dropout (0.3), and early stopping to ensure generalization and robustness. Results highlight the superiority of transformer architectures in modeling multimodal sentiment, with a low MAE (0.1060) indicating precise sentiment intensity prediction. Future work may compare fusion strategies or enhance interpretability. This approach utilizes multimodal learning by effectively combining linguistic, acoustic, and visual cues for sentiment analysis.
Related papers
- TWSSenti: A Novel Hybrid Framework for Topic-Wise Sentiment Analysis on Social Media Using Transformer Models [0.0]
This study explores a hybrid framework combining transformer-based models to improve sentiment classification accuracy and robustness.<n>The framework addresses challenges such as noisy data, contextual ambiguity, and generalization across diverse datasets.<n>This research highlights its applicability to real-world tasks such as social media monitoring, customer sentiment analysis, and public opinion tracking.
arXiv Detail & Related papers (2025-04-14T05:44:11Z) - Dynamic Multimodal Sentiment Analysis: Leveraging Cross-Modal Attention for Enabled Classification [0.0]
multimodal sentiment analysis model integrates text, audio, and visual data to enhance sentiment classification.<n>Study evaluates three feature fusion strategies -- late stage fusion, early stage fusion, and multi-headed attention.<n>Findings suggest that integrating modalities early in the process enhances sentiment classification, while attention mechanisms may have limited impact within the current framework.
arXiv Detail & Related papers (2025-01-14T12:54:19Z) - Comprehensive Multimodal Deep Learning Survival Prediction Enabled by a Transformer Architecture: A Multicenter Study in Glioblastoma [4.578027879885667]
This research aims to improve glioblastoma survival prediction by integrating MR images, clinical and molecular-pathologic data in a transformer-based deep learning model.
The model employs self-supervised learning techniques to effectively encode the high-dimensional MRI input for integration with non-imaging data using cross-attention.
arXiv Detail & Related papers (2024-05-21T17:44:48Z) - An Empirical Study of Multimodal Model Merging [148.48412442848795]
Model merging is a technique that fuses multiple models trained on different tasks to generate a multi-task solution.
We conduct our study for a novel goal where we can merge vision, language, and cross-modal transformers of a modality-specific architecture.
We propose two metrics that assess the distance between weights to be merged and can serve as an indicator of the merging outcomes.
arXiv Detail & Related papers (2023-04-28T15:43:21Z) - Adapted Multimodal BERT with Layer-wise Fusion for Sentiment Analysis [84.12658971655253]
We propose Adapted Multimodal BERT, a BERT-based architecture for multimodal tasks.
adapter adjusts the pretrained language model for the task at hand, while the fusion layers perform task-specific, layer-wise fusion of audio-visual information with textual BERT representations.
In our ablations we see that this approach leads to efficient models, that can outperform their fine-tuned counterparts and are robust to input noise.
arXiv Detail & Related papers (2022-12-01T17:31:42Z) - Learning with MISELBO: The Mixture Cookbook [62.75516608080322]
We present the first ever mixture of variational approximations for a normalizing flow-based hierarchical variational autoencoder (VAE) with VampPrior and a PixelCNN decoder network.
We explain this cooperative behavior by drawing a novel connection between VI and adaptive importance sampling.
We obtain state-of-the-art results among VAE architectures in terms of negative log-likelihood on the MNIST and FashionMNIST datasets.
arXiv Detail & Related papers (2022-09-30T15:01:35Z) - A Cognitive Study on Semantic Similarity Analysis of Large Corpora: A
Transformer-based Approach [0.0]
We perform semantic similarity analysis and modeling on the U.S. Patent Phrase to Phrase Matching dataset using both traditional and transformer-based techniques.
The experimental results demonstrate our methodology's enhanced performance compared to traditional techniques, with an average Pearson correlation score of 0.79.
arXiv Detail & Related papers (2022-07-24T11:06:56Z) - Does a Technique for Building Multimodal Representation Matter? --
Comparative Analysis [0.0]
We show that the choice of the technique for building multimodal representation is crucial to obtain the highest possible model's performance.
Experiments are conducted on three datasets: Amazon Reviews, MovieLens25M, and MovieLens1M.
arXiv Detail & Related papers (2022-06-09T21:30:10Z) - Attention Bottlenecks for Multimodal Fusion [90.75885715478054]
Machine perception models are typically modality-specific and optimised for unimodal benchmarks.
We introduce a novel transformer based architecture that uses fusion' for modality fusion at multiple layers.
We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks.
arXiv Detail & Related papers (2021-06-30T22:44:12Z) - Vision Transformers are Robust Learners [65.91359312429147]
We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
arXiv Detail & Related papers (2021-05-17T02:39:22Z) - Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks [75.69896269357005]
Mixup is the latest data augmentation technique that linearly interpolates input examples and the corresponding labels.
In this paper, we explore how to apply mixup to natural language processing tasks.
We incorporate mixup to transformer-based pre-trained architecture, named "mixup-transformer", for a wide range of NLP tasks.
arXiv Detail & Related papers (2020-10-05T23:37:30Z) - VMLoc: Variational Fusion For Learning-Based Multimodal Camera Localization [36.11674066519118]
We propose an end-to-end framework, termed VMLoc, to fuse different sensor inputs into a common latent space.<n>Unlike previous multimodal variational works directly adapting the objective function of vanilla variational auto-encoder, we show how camera localization can be accurately estimated.
arXiv Detail & Related papers (2020-03-12T14:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.