BrainSegDMlF: A Dynamic Fusion-enhanced SAM for Brain Lesion Segmentation
- URL: http://arxiv.org/abs/2505.06133v2
- Date: Wed, 06 Aug 2025 07:58:16 GMT
- Title: BrainSegDMlF: A Dynamic Fusion-enhanced SAM for Brain Lesion Segmentation
- Authors: Hongming Wang, Yifeng Wu, Huimin Huang, Hongtao Wu, Jia-Xuan Jiang, Xiaodong Zhang, Hao Zheng, Xian Wu, Yefeng Zheng, Jinping Xu, Jing Cheng,
- Abstract summary: Substantial brain lesions in brain imaging exhibit high heterogeneity, with indistinct boundaries between lesion regions and normal brain tissue.<n>Small lesions in single slices are difficult to identify, making the accurate and reproducible segmentation of abnormal regions, as well as their feature description, highly complex.<n>Existing methods have the following limitations: 1) They rely solely on single-modal information for learning, neglecting the multi-modal information commonly used in diagnosis.
- Score: 39.74162517990082
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The segmentation of substantial brain lesions is a significant and challenging task in the field of medical image segmentation. Substantial brain lesions in brain imaging exhibit high heterogeneity, with indistinct boundaries between lesion regions and normal brain tissue. Small lesions in single slices are difficult to identify, making the accurate and reproducible segmentation of abnormal regions, as well as their feature description, highly complex. Existing methods have the following limitations: 1) They rely solely on single-modal information for learning, neglecting the multi-modal information commonly used in diagnosis. This hampers the ability to comprehensively acquire brain lesion information from multiple perspectives and prevents the effective integration and utilization of multi-modal data inputs, thereby limiting a holistic understanding of lesions. 2) They are constrained by the amount of data available, leading to low sensitivity to small lesions and difficulty in detecting subtle pathological changes. 3) Current SAM-based models rely on external prompts, which cannot achieve automatic segmentation and, to some extent, affect diagnostic efficiency.To address these issues, we have developed a large-scale fully automated segmentation model specifically designed for brain lesion segmentation, named BrainSegDMLF. This model has the following features: 1) Dynamic Modal Interactive Fusion (DMIF) module that processes and integrates multi-modal data during the encoding process, providing the SAM encoder with more comprehensive modal information. 2) Layer-by-Layer Upsampling Decoder, enabling the model to extract rich low-level and high-level features even with limited data, thereby detecting the presence of small lesions. 3) Automatic segmentation masks, allowing the model to generate lesion masks automatically without requiring manual prompts.
Related papers
- MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Modality-Aware and Shift Mixer for Multi-modal Brain Tumor Segmentation [12.094890186803958]
We present a novel Modality Aware and Shift Mixer that integrates intra-modality and inter-modality dependencies of multi-modal images for effective and robust brain tumor segmentation.
Specifically, we introduce a Modality-Aware module according to neuroimaging studies for modeling the specific modality pair relationships at low levels, and a Modality-Shift module with specific mosaic patterns is developed to explore the complex relationships across modalities at high levels via the self-attention.
arXiv Detail & Related papers (2024-03-04T14:21:51Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Hard Exudate Segmentation Supplemented by Super-Resolution with
Multi-scale Attention Fusion Module [14.021944194533644]
Hard exudates (HE) is the most specific biomarker for retina edema.
This paper proposes a novel hard exudates segmentation method named SS-MAF with an auxiliary super-resolution task.
We evaluate our method on two public lesion datasets, IDRiD and E-Ophtha.
arXiv Detail & Related papers (2022-11-17T08:25:04Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormer is a general hybrid Transformer architecture for brain disease classification with single fMRI volume.
BrainFormer is constructed by modeling the local cues within each voxel with 3D convolutions.
We evaluate BrainFormer on five independently acquired datasets including ABIDE, ADNI, MPILMBB, ADHD-200 and ECHO.
arXiv Detail & Related papers (2022-08-05T07:54:10Z) - Factorization Approach for Sparse Spatio-Temporal Brain-Computer
Interface [17.85507707727557]
We show that factorizing EEG signals allows the model to extract rich and decisive features under sparse condition.
Evaluations were conducted on a single-arm motor imagery dataset.
arXiv Detail & Related papers (2022-06-17T00:30:43Z) - SMU-Net: Style matching U-Net for brain tumor segmentation with missing
modalities [4.855689194518905]
We propose a style matching U-Net (SMU-Net) for brain tumour segmentation on MRI images.
Our co-training approach utilizes a content and style-matching mechanism to distill the informative features from the full-modality network into a missing modality network.
Our style matching module adaptively recalibrates the representation space by learning a matching function to transfer the informative and textural features from a full-modality path into a missing-modality path.
arXiv Detail & Related papers (2022-04-06T17:55:19Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
We propose a novel multimodal segmentation framework which is robust to the absence of imaging modalities.
Our network uses feature disentanglement to decompose the input modalities into the modality-specific appearance code.
We validate our method on the important yet challenging multimodal brain tumor segmentation task with the BRATS challenge dataset.
arXiv Detail & Related papers (2020-02-22T14:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.