Efficient Sensorimotor Learning for Open-world Robot Manipulation
- URL: http://arxiv.org/abs/2505.06136v1
- Date: Wed, 07 May 2025 18:23:58 GMT
- Title: Efficient Sensorimotor Learning for Open-world Robot Manipulation
- Authors: Yifeng Zhu,
- Abstract summary: This dissertation tackles the Open-world Robot Manipulation problem using a methodology of efficient sensorimotor learning.<n>The key to enabling efficient sensorimotor learning lies in leveraging regular patterns that exist in limited amounts of demonstration data.
- Score: 6.1694031687146955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This dissertation considers Open-world Robot Manipulation, a manipulation problem where a robot must generalize or quickly adapt to new objects, scenes, or tasks for which it has not been pre-programmed or pre-trained. This dissertation tackles the problem using a methodology of efficient sensorimotor learning. The key to enabling efficient sensorimotor learning lies in leveraging regular patterns that exist in limited amounts of demonstration data. These patterns, referred to as ``regularity,'' enable the data-efficient learning of generalizable manipulation skills. This dissertation offers a new perspective on formulating manipulation problems through the lens of regularity. Building upon this notion, we introduce three major contributions. First, we introduce methods that endow robots with object-centric priors, allowing them to learn generalizable, closed-loop sensorimotor policies from a small number of teleoperation demonstrations. Second, we introduce methods that constitute robots' spatial understanding, unlocking their ability to imitate manipulation skills from in-the-wild video observations. Last but not least, we introduce methods that enable robots to identify reusable skills from their past experiences, resulting in systems that can continually imitate multiple tasks in a sequential manner. Altogether, the contributions of this dissertation help lay the groundwork for building general-purpose personal robots that can quickly adapt to new situations or tasks with low-cost data collection and interact easily with humans. By enabling robots to learn and generalize from limited data, this dissertation takes a step toward realizing the vision of intelligent robotic assistants that can be seamlessly integrated into everyday scenarios.
Related papers
- A Survey of Embodied Learning for Object-Centric Robotic Manipulation [27.569063968870868]
Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in AI.
Unlike data-driven machine learning methods, embodied learning focuses on robot learning through physical interaction with the environment.
arXiv Detail & Related papers (2024-08-21T11:32:09Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning [108.41464483878683]
We study the problem of enabling a vision-based robotic manipulation system to generalize to novel tasks.
We develop an interactive and flexible imitation learning system that can learn from both demonstrations and interventions.
When scaling data collection on a real robot to more than 100 distinct tasks, we find that this system can perform 24 unseen manipulation tasks with an average success rate of 44%.
arXiv Detail & Related papers (2022-02-04T07:30:48Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
We propose dual-arm settings as platforms for robot learning.
We will discuss the potential benefits of this setup as well as the challenges and research directions that can be pursued.
arXiv Detail & Related papers (2021-10-15T12:51:57Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - The Ingredients of Real-World Robotic Reinforcement Learning [71.92831985295163]
We discuss the elements that are needed for a robotic learning system that can continually and autonomously improve with data collected in the real world.
We propose a particular instantiation of such a system, using dexterous manipulation as our case study.
We demonstrate that our complete system can learn without any human intervention, acquiring a variety of vision-based skills with a real-world three-fingered hand.
arXiv Detail & Related papers (2020-04-27T03:36:10Z) - Efficient reinforcement learning control for continuum robots based on
Inexplicit Prior Knowledge [3.3645162441357437]
We propose an efficient reinforcement learning method based on inexplicit prior knowledge.
By using our method, we can achieve active visual tracking and distance maintenance of a tendon-driven robot.
arXiv Detail & Related papers (2020-02-26T15:47:11Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.