A Survey of Embodied Learning for Object-Centric Robotic Manipulation
- URL: http://arxiv.org/abs/2408.11537v1
- Date: Wed, 21 Aug 2024 11:32:09 GMT
- Title: A Survey of Embodied Learning for Object-Centric Robotic Manipulation
- Authors: Ying Zheng, Lei Yao, Yuejiao Su, Yi Zhang, Yi Wang, Sicheng Zhao, Yiyi Zhang, Lap-Pui Chau,
- Abstract summary: Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in AI.
Unlike data-driven machine learning methods, embodied learning focuses on robot learning through physical interaction with the environment.
- Score: 27.569063968870868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in embodied AI. It is crucial for advancing next-generation intelligent robots and has garnered significant interest recently. Unlike data-driven machine learning methods, embodied learning focuses on robot learning through physical interaction with the environment and perceptual feedback, making it especially suitable for robotic manipulation. In this paper, we provide a comprehensive survey of the latest advancements in this field and categorize the existing work into three main branches: 1) Embodied perceptual learning, which aims to predict object pose and affordance through various data representations; 2) Embodied policy learning, which focuses on generating optimal robotic decisions using methods such as reinforcement learning and imitation learning; 3) Embodied task-oriented learning, designed to optimize the robot's performance based on the characteristics of different tasks in object grasping and manipulation. In addition, we offer an overview and discussion of public datasets, evaluation metrics, representative applications, current challenges, and potential future research directions. A project associated with this survey has been established at https://github.com/RayYoh/OCRM_survey.
Related papers
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
Differentiable simulation has become a powerful tool for system identification.
Our approach calibrates object properties by using information from the robot, without relying on data from the object itself.
We demonstrate the effectiveness of our method on a low-cost robotic platform.
arXiv Detail & Related papers (2024-10-04T20:48:38Z) - Tiny Robotics Dataset and Benchmark for Continual Object Detection [6.4036245876073234]
This work introduces a novel benchmark to evaluate the continual learning capabilities of object detection systems in tiny robotic platforms.
Our contributions include: (i) Tiny Robotics Object Detection (TiROD), a comprehensive dataset collected using a small mobile robot, designed to test the adaptability of object detectors across various domains and classes; (ii) an evaluation of state-of-the-art real-time object detectors combined with different continual learning strategies on this dataset; and (iii) we publish the data and the code to replicate the results to foster continuous advancements in this field.
arXiv Detail & Related papers (2024-09-24T16:21:27Z) - Learning by Watching: A Review of Video-based Learning Approaches for
Robot Manipulation [0.0]
Recent works have explored learning manipulation skills by passively watching abundant videos sourced online.
This survey reviews foundations such as video feature representation learning techniques, object affordance understanding, 3D hand/body modeling, and large-scale robot resources.
We discuss how learning only from observing large-scale human videos can enhance generalization and sample efficiency for robotic manipulation.
arXiv Detail & Related papers (2024-02-11T08:41:42Z) - Teaching Unknown Objects by Leveraging Human Gaze and Augmented Reality
in Human-Robot Interaction [3.1473798197405953]
This dissertation aims to teach a robot unknown objects in the context of Human-Robot Interaction (HRI)
The combination of eye tracking and Augmented Reality created a powerful synergy that empowered the human teacher to communicate with the robot.
The robot's object detection capabilities exhibited comparable performance to state-of-the-art object detectors trained on extensive datasets.
arXiv Detail & Related papers (2023-12-12T11:34:43Z) - Learning active tactile perception through belief-space control [21.708391958446274]
We propose a method that autonomously learns tactile exploration policies by developing a generative world model.
We evaluate our method on three simulated tasks where the goal is to estimate a desired object property.
We find that our method is able to discover policies that efficiently gather information about the desired property in an intuitive manner.
arXiv Detail & Related papers (2023-11-30T21:54:42Z) - Human-oriented Representation Learning for Robotic Manipulation [64.59499047836637]
Humans inherently possess generalizable visual representations that empower them to efficiently explore and interact with the environments in manipulation tasks.
We formalize this idea through the lens of human-oriented multi-task fine-tuning on top of pre-trained visual encoders.
Our Task Fusion Decoder consistently improves the representation of three state-of-the-art visual encoders for downstream manipulation policy-learning.
arXiv Detail & Related papers (2023-10-04T17:59:38Z) - Enhancing Robot Learning through Learned Human-Attention Feature Maps [6.724036710994883]
We think that embedding auxiliary information about focus point into robot learning would enhance efficiency and robustness of the learning process.
In this paper, we propose a novel approach to model and emulate the human attention with an approximate prediction model.
We test our approach on two learning tasks - object detection and imitation learning.
arXiv Detail & Related papers (2023-08-29T14:23:44Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
We conduct an extensive study of six offline learning algorithms for robot manipulation.
Our study analyzes the most critical challenges when learning from offline human data.
We highlight opportunities for learning from human datasets.
arXiv Detail & Related papers (2021-08-06T20:48:30Z) - Actionable Models: Unsupervised Offline Reinforcement Learning of
Robotic Skills [93.12417203541948]
We propose the objective of learning a functional understanding of the environment by learning to reach any goal state in a given dataset.
We find that our method can operate on high-dimensional camera images and learn a variety of skills on real robots that generalize to previously unseen scenes and objects.
arXiv Detail & Related papers (2021-04-15T20:10:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.