Topo-VM-UNetV2: Encoding Topology into Vision Mamba UNet for Polyp Segmentation
- URL: http://arxiv.org/abs/2505.06210v1
- Date: Fri, 09 May 2025 17:41:13 GMT
- Title: Topo-VM-UNetV2: Encoding Topology into Vision Mamba UNet for Polyp Segmentation
- Authors: Diego Adame, Jose A. Nunez, Fabian Vazquez, Nayeli Gurrola, Huimin Li, Haoteng Tang, Bin Fu, Pengfei Gu,
- Abstract summary: We propose Topo-VMUNetV2, which encodes topological features into the Mamba-based polyp segmentation model, VMUNetV2.<n>Our method consists two stages: VMUNetV2 is used to generate probability maps (PMs) for the training and test images, which are then used to compute topology attention maps.
- Score: 4.856498016044607
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Convolutional neural network (CNN) and Transformer-based architectures are two dominant deep learning models for polyp segmentation. However, CNNs have limited capability for modeling long-range dependencies, while Transformers incur quadratic computational complexity. Recently, State Space Models such as Mamba have been recognized as a promising approach for polyp segmentation because they not only model long-range interactions effectively but also maintain linear computational complexity. However, Mamba-based architectures still struggle to capture topological features (e.g., connected components, loops, voids), leading to inaccurate boundary delineation and polyp segmentation. To address these limitations, we propose a new approach called Topo-VM-UNetV2, which encodes topological features into the Mamba-based state-of-the-art polyp segmentation model, VM-UNetV2. Our method consists of two stages: Stage 1: VM-UNetV2 is used to generate probability maps (PMs) for the training and test images, which are then used to compute topology attention maps. Specifically, we first compute persistence diagrams of the PMs, then we generate persistence score maps by assigning persistence values (i.e., the difference between death and birth times) of each topological feature to its birth location, finally we transform persistence scores into attention weights using the sigmoid function. Stage 2: These topology attention maps are integrated into the semantics and detail infusion (SDI) module of VM-UNetV2 to form a topology-guided semantics and detail infusion (Topo-SDI) module for enhancing the segmentation results. Extensive experiments on five public polyp segmentation datasets demonstrate the effectiveness of our proposed method. The code will be made publicly available.
Related papers
- Sequential-Parallel Duality in Prefix Scannable Models [68.39855814099997]
Recent developments have given rise to various models, such as Gated Linear Attention (GLA) and Mamba.<n>This raises a natural question: can we characterize the full class of neural sequence models that support near-constant-time parallel evaluation and linear-time, constant-space sequential inference?
arXiv Detail & Related papers (2025-06-12T17:32:02Z) - PPMamba: A Pyramid Pooling Local Auxiliary SSM-Based Model for Remote Sensing Image Semantic Segmentation [1.5136939451642137]
This paper proposes a novel network called Pyramid Pooling Mamba (PPMamba), which integrates CNN and Mamba for semantic segmentation tasks.
PPMamba achieves competitive performance compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-10T08:08:50Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - VM-UNET-V2 Rethinking Vision Mamba UNet for Medical Image Segmentation [8.278068663433261]
We propose Vison Mamba-UNetV2, inspired by Mamba architecture, to capture contextual information in images.
VM-UNetV2 exhibits competitive performance in medical image segmentation tasks.
We conduct comprehensive experiments on the ISIC17, ISIC18, CVC-300, CVC-ClinicDB, Kvasir CVC-ColonDB and ETIS-LaribPolypDB public datasets.
arXiv Detail & Related papers (2024-03-14T08:12:39Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - VM-UNet: Vision Mamba UNet for Medical Image Segmentation [2.3876474175791302]
We propose a U-shape architecture model for medical image segmentation, named Vision Mamba UNet (VM-UNet)
We conduct comprehensive experiments on the ISIC17, ISIC18, and Synapse datasets, and the results indicate that VM-UNet performs competitively in medical image segmentation tasks.
arXiv Detail & Related papers (2024-02-04T13:37:21Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - RaBiT: An Efficient Transformer using Bidirectional Feature Pyramid
Network with Reverse Attention for Colon Polyp Segmentation [0.0]
This paper introduces RaBiT, an encoder-decoder model that incorporates a lightweight Transformer-based architecture in the encoder.
Our method demonstrates high generalization capability in cross-dataset experiments, even when the training and test sets have different characteristics.
arXiv Detail & Related papers (2023-07-12T19:25:10Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers [124.01928050651466]
We propose a new type of polyp segmentation method, named Polyp-PVT.
The proposed model, named Polyp-PVT, effectively suppresses noises in the features and significantly improves their expressive capabilities.
arXiv Detail & Related papers (2021-08-16T07:09:06Z) - Approximated Bilinear Modules for Temporal Modeling [116.6506871576514]
Two-layers in CNNs can be converted to temporal bilinear modules by adding an auxiliary-branch sampling.
Our models can outperform most state-of-the-art methods on SomethingSomething v1 and v2 datasets without pretraining.
arXiv Detail & Related papers (2020-07-25T09:07:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.