Supervised machine learning based signal demodulation in chaotic communications
- URL: http://arxiv.org/abs/2505.06243v1
- Date: Sun, 27 Apr 2025 13:53:46 GMT
- Title: Supervised machine learning based signal demodulation in chaotic communications
- Authors: Mykola Kozlenko,
- Abstract summary: Chaotic bifurcation parameter modulation is one of the well-known and widely-used techniques.<n>This paper presents the machine learning based demodulation approach for the bifurcation parameter keying.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A chaotic modulation scheme is an efficient wideband communication method. It utilizes the deterministic chaos to generate pseudo-random carriers. Chaotic bifurcation parameter modulation is one of the well-known and widely-used techniques. This paper presents the machine learning based demodulation approach for the bifurcation parameter keying. It presents the structure of a convolutional neural network as well as performance metrics values for signals generated with the chaotic logistic map. The paper provides an assessment of the overall accuracy for binary signals. It reports the accuracy value of 0.88 for the bifurcation parameter deviation of 1.34% in the presence of additive white Gaussian noise at the normalized signal-to-noise ratio value of 20 dB for balanced dataset.
Related papers
- Machine Learning-aided Optimal Control of a noisy qubit [0.0]
We apply a graybox machine-learning framework to model and control a qubit undergoing Markovian and non-Markovian dynamics from environmental noise.<n>We benchmark both non-Gaussian random-telegraph noise and Gaussian Ornstein-Uhlenbeck noise and achieve low prediction errors even in challenging noise coupling regimes.
arXiv Detail & Related papers (2025-07-18T17:06:58Z) - Graph-Based Fault Diagnosis for Rotating Machinery: Adaptive Segmentation and Structural Feature Integration [0.0]
This paper proposes a graph-based framework for robust and interpretable multiclass fault diagnosis in rotating machinery.<n>It integrates entropy-optimized signal segmentation, time-frequency feature extraction, and graph-theoretic modeling to transform vibration signals into structured representations.<n>The proposed method achieves high diagnostic accuracy when evaluated on two benchmark datasets.
arXiv Detail & Related papers (2025-04-29T13:34:52Z) - Software defined demodulation of multiple frequency shift keying with dense neural network for weak signal communications [0.0]
We present the symbol and bit error rate performance of the weak signal digital communications system.<n>We investigated the interference over an additive white Gaussian noise with average signal-to-noise ratios from -20 dB to 0 dB.
arXiv Detail & Related papers (2025-02-22T22:21:25Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Meta-Learning Sparse Implicit Neural Representations [69.15490627853629]
Implicit neural representations are a promising new avenue of representing general signals.
Current approach is difficult to scale for a large number of signals or a data set.
We show that meta-learned sparse neural representations achieve a much smaller loss than dense meta-learned models.
arXiv Detail & Related papers (2021-10-27T18:02:53Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
We propose to estimate the gradient of sign function in the Fourier frequency domain using the combination of sine functions for training BNNs.
The experiments on several benchmark datasets and neural architectures illustrate that the binary network learned using our method achieves the state-of-the-art accuracy.
arXiv Detail & Related papers (2021-03-01T08:25:26Z) - Blind Modulation Classification via Combined Machine Learning and Signal
Feature Extraction [5.873416857161077]
It well benefits combined machine leaning and signal feature extraction to recognize diverse range of modulation in low signal power to noise ratio (SNR)
It can recognize 4-QAM in SNR=-4.2 dB, and 4-FSK in SNR=2.1 dB with %99 success rate.
arXiv Detail & Related papers (2021-01-12T07:58:33Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
We propose a plug-and-play compressed sensing (CS) recovery algorithm suitable for any i.i.d. source prior.
Our algorithm builds upon Borgerding's learned AMP (LAMP), yet significantly improves it by adopting a universal denoising function within the algorithm.
Numerical evaluation shows that the L-GM-AMP algorithm achieves state-of-the-art performance without any knowledge of the source prior.
arXiv Detail & Related papers (2020-11-18T16:40:45Z) - Iterative Correction of Sensor Degradation and a Bayesian Multi-Sensor
Data Fusion Method [0.0]
We present a novel method for inferring ground-truth signal from degraded signals.
The algorithm learns a multiplicative degradation effect by performing iterative corrections of two signals.
We include theoretical analysis and prove convergence to the ground-truth signal for the noiseless measurement model.
arXiv Detail & Related papers (2020-09-07T13:24:47Z) - Time-Frequency Analysis based Blind Modulation Classification for
Multiple-Antenna Systems [6.011027400738812]
Blind modulation classification is an important step to implement cognitive radio networks.
The multiple-input multiple-output (MIMO) technique is widely used in military and civil communication systems.
Traditional likelihood-based and feature-based approaches cannot be applied in these scenarios.
arXiv Detail & Related papers (2020-04-01T12:27:29Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.