Software defined demodulation of multiple frequency shift keying with dense neural network for weak signal communications
- URL: http://arxiv.org/abs/2502.16371v1
- Date: Sat, 22 Feb 2025 22:21:25 GMT
- Title: Software defined demodulation of multiple frequency shift keying with dense neural network for weak signal communications
- Authors: Mykola Kozlenko, Vira Vialkova,
- Abstract summary: We present the symbol and bit error rate performance of the weak signal digital communications system.<n>We investigated the interference over an additive white Gaussian noise with average signal-to-noise ratios from -20 dB to 0 dB.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present the symbol and bit error rate performance of the weak signal digital communications system. We investigate orthogonal multiple frequency shift keying modulation scheme with supervised machine learning demodulation approach using simple dense end-to-end artificial neural network. We focus on the interference immunity over an additive white Gaussian noise with average signal-to-noise ratios from -20 dB to 0 dB.
Related papers
- Supervised machine learning based signal demodulation in chaotic communications [0.0]
Chaotic bifurcation parameter modulation is one of the well-known and widely-used techniques.<n>This paper presents the machine learning based demodulation approach for the bifurcation parameter keying.
arXiv Detail & Related papers (2025-04-27T13:53:46Z) - Software demodulation of weak radio signals using convolutional neural network [0.0]
We investigated the software demodulation of the multiple frequency shift keying weak signals transmitted with JT65A communication protocol.
We proved that the interference immunity is about 1.5 dB less than the theoretical limit of non-coherent demodulation of MFSK signals.
arXiv Detail & Related papers (2025-02-26T12:41:25Z) - Tuning the Frequencies: Robust Training for Sinusoidal Neural Networks [1.5124439914522694]
We introduce a theoretical framework that explains the capacity property of sinusoidal networks.<n>We show how its layer compositions produce a large number of new frequencies expressed as integer combinations of the input frequencies.<n>Our method, referred to as TUNER, greatly improves the stability and convergence of sinusoidal INR training, leading to detailed reconstructions.
arXiv Detail & Related papers (2024-07-30T18:24:46Z) - Deep Learning-Based Frequency Offset Estimation [7.143765507026541]
We show the utilization of deep learning for CFO estimation by employing a residual network (ResNet) to learn and extract signal features.
In comparison to the commonly used traditional CFO estimation methods, our proposed IQ-ResNet method exhibits superior performance across various scenarios.
arXiv Detail & Related papers (2023-11-08T13:56:22Z) - Waveform Manipulation Against DNN-based Modulation Classification Attacks [2.8475397246467575]
We propose a method for defending against an eavesdropper that uses a Deep Neural Network (DNN) for learning the modulation of wireless communication signals.
Our method is based on manipulating the emitted waveform with the aid of a continuous time frequency-modulated (FM) obfuscating signal that is mixed with the modulated data.
The results indicate that careful selection of the parameters of the obfuscating waveform can drop classification performance at the eavesdropper to less than 10% in AWGN and fading channels with no performance loss at the LRx.
arXiv Detail & Related papers (2023-10-03T09:03:34Z) - On Neural Architectures for Deep Learning-based Source Separation of
Co-Channel OFDM Signals [104.11663769306566]
We study the single-channel source separation problem involving frequency-division multiplexing (OFDM) signals.
We propose critical domain-informed modifications to the network parameterization, based on insights from OFDM structures.
arXiv Detail & Related papers (2023-03-11T16:29:13Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Learning Based Joint Coding-Modulation for Digital Semantic
Communication Systems [45.81474044790071]
In learning-based semantic communications, neural networks have replaced different building blocks in traditional communication systems.
The intrinsic mechanism of neural network based digital modulation is mapping continuous output of the neural network encoder into discrete constellation symbols.
We develop a joint coding-modulation scheme for digital semantic communications with BPSK modulation.
arXiv Detail & Related papers (2022-08-11T08:58:35Z) - Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation [0.0]
The proposed method first pre-processes the received signal by using a zero-forcing (ZF) detector and then uses a neural network consisting of a convolutional neural network (CNN) followed by a fully-connected neural network (FCNN)
The FCNN part uses only two fully-connected layers, which can be adapted to yield a trade-off between complexity and bit error rate (BER) performance.
It has been demonstrated that the proposed deep convolutional neural network-based detection and demodulation scheme provides better BER performance compared to ZF detector with a reasonable complexity increase.
arXiv Detail & Related papers (2022-02-06T22:18:42Z) - Digital Signal Processing Using Deep Neural Networks [2.624902795082451]
We present a custom deep neural network (DNN) specially designed to solve problems in the RF domain.
Our model leverages the mechanisms of feature extraction and attention through the combination of an autoencoder convolutional network with a transformer network.
We also present a new open dataset and physical data augmentation model that enables training of DNNs that can perform automatic modulation classification, infer and correct transmission channel effects, and directly demodulate baseband RF signals.
arXiv Detail & Related papers (2021-09-21T18:59:32Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Variational Autoencoders: A Harmonic Perspective [79.49579654743341]
We study Variational Autoencoders (VAEs) from the perspective of harmonic analysis.
We show that the encoder variance of a VAE controls the frequency content of the functions parameterised by the VAE encoder and decoder neural networks.
arXiv Detail & Related papers (2021-05-31T10:39:25Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
We propose to estimate the gradient of sign function in the Fourier frequency domain using the combination of sine functions for training BNNs.
The experiments on several benchmark datasets and neural architectures illustrate that the binary network learned using our method achieves the state-of-the-art accuracy.
arXiv Detail & Related papers (2021-03-01T08:25:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.