ABE: A Unified Framework for Robust and Faithful Attribution-Based Explainability
- URL: http://arxiv.org/abs/2505.06258v1
- Date: Sat, 03 May 2025 12:00:59 GMT
- Title: ABE: A Unified Framework for Robust and Faithful Attribution-Based Explainability
- Authors: Zhiyu Zhu, Jiayu Zhang, Zhibo Jin, Fang Chen, Jianlong Zhou,
- Abstract summary: Existing frameworks, such as InterpretDL and OmniXAI, integrate multiple attribution methods but suffer from scalability limitations, high coupling, theoretical constraints, and lack of user-friendly implementations.<n>We propose Attribution-Based Explainability (ABE), a unified framework that formalizes Fundamental Attribution Methods and integrates state-of-the-art attribution algorithms.
- Score: 10.957111899739926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attribution algorithms are essential for enhancing the interpretability and trustworthiness of deep learning models by identifying key features driving model decisions. Existing frameworks, such as InterpretDL and OmniXAI, integrate multiple attribution methods but suffer from scalability limitations, high coupling, theoretical constraints, and lack of user-friendly implementations, hindering neural network transparency and interoperability. To address these challenges, we propose Attribution-Based Explainability (ABE), a unified framework that formalizes Fundamental Attribution Methods and integrates state-of-the-art attribution algorithms while ensuring compliance with attribution axioms. ABE enables researchers to develop novel attribution techniques and enhances interpretability through four customizable modules: Robustness, Interpretability, Validation, and Data & Model. This framework provides a scalable, extensible foundation for advancing attribution-based explainability and fostering transparent AI systems. Our code is available at: https://github.com/LMBTough/ABE-XAI.
Related papers
- Feature-Based vs. GAN-Based Learning from Demonstrations: When and Why [50.191655141020505]
This survey provides a comparative analysis of feature-based and GAN-based approaches to learning from demonstrations.<n>We argue that the dichotomy between feature-based and GAN-based methods is increasingly nuanced.
arXiv Detail & Related papers (2025-07-08T11:45:51Z) - Vintix: Action Model via In-Context Reinforcement Learning [72.65703565352769]
We present the first steps toward scaling ICRL by introducing a fixed, cross-domain model capable of learning behaviors through in-context reinforcement learning.<n>Our results demonstrate that Algorithm Distillation, a framework designed to facilitate ICRL, offers a compelling and competitive alternative to expert distillation to construct versatile action models.
arXiv Detail & Related papers (2025-01-31T18:57:08Z) - Mechanistic understanding and validation of large AI models with SemanticLens [13.712668314238082]
Unlike human-engineered systems such as aeroplanes, the inner workings of AI models remain largely opaque.<n>This paper introduces SemanticLens, a universal explanation method for neural networks that maps hidden knowledge encoded by components.
arXiv Detail & Related papers (2025-01-09T17:47:34Z) - A Unified Framework for Evaluating the Effectiveness and Enhancing the Transparency of Explainable AI Methods in Real-World Applications [2.0681376988193843]
"Black box" characteristic of AI models constrains interpretability, transparency, and reliability.<n>This study presents a unified XAI evaluation framework to evaluate correctness, interpretability, robustness, fairness, and completeness of explanations generated by AI models.
arXiv Detail & Related papers (2024-12-05T05:30:10Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.<n>GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Neurosymbolic AI approach to Attribution in Large Language Models [5.3454230926797734]
Neurosymbolic AI (NesyAI) combines the strengths of neural networks with structured symbolic reasoning.
This paper explores how NesyAI frameworks can enhance existing attribution models, offering more reliable, interpretable, and adaptable systems.
arXiv Detail & Related papers (2024-09-30T02:20:36Z) - An Adaptive End-to-End IoT Security Framework Using Explainable AI and LLMs [1.9662978733004601]
This paper presents an innovative framework for real-time IoT attack detection and response that leverages Machine Learning (ML), Explainable AI (XAI), and Large Language Models (LLM)
Our end-to-end framework not only facilitates a seamless transition from model development to deployment but also represents a real-world application capability that is often lacking in existing research.
arXiv Detail & Related papers (2024-09-20T03:09:23Z) - Explainable AI for Enhancing Efficiency of DL-based Channel Estimation [1.0136215038345013]
Support of artificial intelligence based decision-making is a key element in future 6G networks.<n>In such applications, using AI as black-box models is risky and challenging.<n>We propose a novel-based XAI-CHEST framework that is oriented toward channel estimation in wireless communications.
arXiv Detail & Related papers (2024-07-09T16:24:21Z) - Mathematical Algorithm Design for Deep Learning under Societal and
Judicial Constraints: The Algorithmic Transparency Requirement [65.26723285209853]
We derive a framework to analyze whether a transparent implementation in a computing model is feasible.
Based on previous results, we find that Blum-Shub-Smale Machines have the potential to establish trustworthy solvers for inverse problems.
arXiv Detail & Related papers (2024-01-18T15:32:38Z) - Deep Learning Reproducibility and Explainable AI (XAI) [9.13755431537592]
The nondeterminism of Deep Learning (DL) training algorithms and its influence on the explainability of neural network (NN) models are investigated.
To discuss the issue, two convolutional neural networks (CNN) have been trained and their results compared.
arXiv Detail & Related papers (2022-02-23T12:06:20Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.