Fair Clustering with Clusterlets
- URL: http://arxiv.org/abs/2505.06259v1
- Date: Sat, 03 May 2025 17:00:54 GMT
- Title: Fair Clustering with Clusterlets
- Authors: Mattia Setzu, Riccardo Guidotti,
- Abstract summary: Given a set of small and fair clusters, a trivial centroid-based clustering algorithm yields a fair clustering.<n>Finding a suitable starting clustering can be computationally expensive, rather complex or arbitrary.<n>We propose a set of simple emphclusterlet-based fuzzy clustering algorithms that match single-class clusters, optimizing fair clustering.
- Score: 5.8010446129208155
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Given their widespread usage in the real world, the fairness of clustering methods has become of major interest. Theoretical results on fair clustering show that fairness enjoys transitivity: given a set of small and fair clusters, a trivial centroid-based clustering algorithm yields a fair clustering. Unfortunately, discovering a suitable starting clustering can be computationally expensive, rather complex or arbitrary. In this paper, we propose a set of simple \emph{clusterlet}-based fuzzy clustering algorithms that match single-class clusters, optimizing fair clustering. Matching leverages clusterlet distance, optimizing for classic clustering objectives, while also regularizing for fairness. Empirical results show that simple matching strategies are able to achieve high fairness, and that appropriate parameter tuning allows to achieve high cohesion and low overlap.
Related papers
- Fair Bayesian Model-Based Clustering [3.1911375902105386]
Group fairness ensures that the proportions of each sensitive group are similar in all clusters.<n>Most existing group-fair clustering methods are based on the $K$-means clustering.<n>We propose a fair Bayesian model-based clustering called Fair Bayesian Clustering.
arXiv Detail & Related papers (2025-06-15T13:16:32Z) - Fair Clustering via Alignment [3.5845787949988592]
Algorithmic fairness in clustering aims to balance proportions of instances assigned to each cluster with respect to a given sensitive attribute.<n>We propose a new fair clustering algorithm based on a novel decomposition of the fair $K$-means clustering objective function.
arXiv Detail & Related papers (2025-05-14T04:29:09Z) - Revisiting Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [69.15976031704687]
We propose IAC (Instance-Adaptive Clustering), the first algorithm whose performance matches the instance-specific lower bounds both in expectation and with high probability.<n>IAC maintains an overall computational complexity of $ mathcalO(n, textpolylog(n) $, making it scalable and practical for large-scale problems.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Cluster-level Group Representativity Fairness in $k$-means Clustering [3.420467786581458]
Clustering algorithms could generate clusters such that different groups are disadvantaged within different clusters.
We develop a clustering algorithm, building upon the centroid clustering paradigm pioneered by classical algorithms.
We show that our method is effective in enhancing cluster-level group representativity fairness significantly at low impact on cluster coherence.
arXiv Detail & Related papers (2022-12-29T22:02:28Z) - Socially Fair Center-based and Linear Subspace Clustering [8.355270405285909]
Center-based clustering and linear subspace clustering are popular techniques to partition real-world data into smaller clusters.
Different clustering cost per point for different sensitive groups can lead to fairness-related harms.
We propose a unified framework to solve socially fair center-based clustering and linear subspace clustering.
arXiv Detail & Related papers (2022-08-22T07:10:17Z) - Fair Labeled Clustering [28.297893914525517]
We consider the downstream application of clustering and how group fairness should be ensured for such a setting.
We provide algorithms for such problems and show that in contrast to their NP-hard counterparts in group fair clustering, they permit efficient solutions.
We also consider a well-motivated alternative setting where the decision-maker is free to assign labels to the clusters regardless of the centers' positions in the metric space.
arXiv Detail & Related papers (2022-05-28T07:07:12Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Deep Fair Discriminative Clustering [24.237000220172906]
We study a general notion of group-level fairness for binary and multi-state protected status variables (PSVs)
We propose a refinement learning algorithm to combine the clustering goal with the fairness objective to learn fair clusters adaptively.
Our framework shows promising results for novel clustering tasks including flexible fairness constraints, multi-state PSVs and predictive clustering.
arXiv Detail & Related papers (2021-05-28T23:50:48Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Fair Hierarchical Clustering [92.03780518164108]
We define a notion of fairness that mitigates over-representation in traditional clustering.
We show that our algorithms can find a fair hierarchical clustering, with only a negligible loss in the objective.
arXiv Detail & Related papers (2020-06-18T01:05:11Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
We study the statistical and computational properties of a network Lasso method for local graph clustering.
The clusters delivered by nLasso can be characterized elegantly via network flows between cluster boundary and seed nodes.
arXiv Detail & Related papers (2020-04-25T17:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.