論文の概要: FEMSN: Frequency-Enhanced Multiscale Network for fault diagnosis of rotating machinery under strong noise environments
- arxiv url: http://arxiv.org/abs/2505.06285v1
- Date: Wed, 07 May 2025 07:58:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:48.742315
- Title: FEMSN: Frequency-Enhanced Multiscale Network for fault diagnosis of rotating machinery under strong noise environments
- Title(参考訳): FEMSN:強い騒音環境下での回転機械の故障診断のための周波数拡張マルチスケールネットワーク
- Authors: Yuhan Yuan, Xiaomo Jiang, Yanfeng Han, Ke Xiao,
- Abstract要約: 転がり軸受は回転機械の重要な構成要素であり, 工業生産に不可欠な機能である。
既存の状態モニタリング手法は、時間領域信号から異種の特徴を抽出し、健康状態を評価することに焦点を当てている。
本稿では,FEMSNと呼ばれる新しいCNNモデルを提案する。
- 参考スコア(独自算出の注目度): 0.6970521089724208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rolling bearings are critical components of rotating machinery, and their proper functioning is essential for industrial production. Most existing condition monitoring methods focus on extracting discriminative features from time-domain signals to assess bearing health status. However, under complex operating conditions, periodic impulsive characteristics related to fault information are often obscured by noise interference. Consequently, existing approaches struggle to learn distinctive fault-related features in such scenarios. To address this issue, this paper proposes a novel CNN-based model named FEMSN. Specifically, a Fourier Adaptive Denoising Encoder Layer (FADEL) is introduced as an input denoising layer to enhance key features while filtering out irrelevant information. Subsequently, a Multiscale Time-Frequency Fusion (MSTFF) module is employed to extract fused time-frequency features, further improving the model robustness and nonlinear representation capability. Additionally, a distillation layer is incorporated to expand the receptive field. Based on these advancements, a novel deep lightweight CNN model, termed the Frequency-Enhanced Multiscale Network (FEMSN), is developed. The effectiveness of FEMSN and FADEL in machine health monitoring and stability assessment is validated through two case studies.
- Abstract(参考訳): 転がり軸受は回転機械の重要な構成要素であり, 工業生産に不可欠な機能である。
既存の状態モニタリング手法の多くは、時間領域信号から識別的特徴を抽出し、健康状態を評価することに焦点を当てている。
しかし, 複雑な運転条件下では, 故障情報に関連する周期的なインパルス特性はノイズ干渉によって無視されることが多い。
その結果、既存のアプローチはそのようなシナリオで特有の障害関連の特徴を学ぶのに苦労している。
本稿では,FEMSNという新しいCNNモデルを提案する。
具体的には、入力Denoising LayerとしてFourier Adaptive Denoising Encoder Layer (FADEL)を導入し、キー機能を強化し、無関係な情報をフィルタリングする。
その後,Multiscale Time-Frequency Fusion (MSTFF)モジュールを用いて,融合した時間周波数の特徴を抽出し,モデルロバスト性や非線形表現性を向上する。
また、受容場を拡大するために蒸留層が組み込まれている。
これらの進歩に基づき、周波数拡張マルチスケールネットワーク(FEMSN)と呼ばれる新しい軽量CNNモデルを開発した。
FEMSNとFADELが機械の健康モニタリングおよび安定性評価に与える影響を2つのケーススタディで検証した。
関連論文リスト
- LOGLO-FNO: Efficient Learning of Local and Global Features in Fourier Neural Operators [20.77877474840923]
高周波情報は機械学習における重要な課題である。
ディープニューラルネットワークは、低周波成分の学習に対するいわゆるスペクトルバイアスを示す。
放射結合スペクトル誤差に基づく新しい周波数感受性損失項を提案する。
論文 参考訳(メタデータ) (2025-04-05T19:35:04Z) - STAF: Sinusoidal Trainable Activation Functions for Implicit Neural Representation [7.2888019138115245]
Inlicit Neural Representations (INR) は、連続的な信号をモデリングするための強力なフレームワークとして登場した。
ReLUベースのネットワークのスペクトルバイアスは、十分に確立された制限であり、ターゲット信号の微細な詳細を捕捉する能力を制限する。
Sinusoidal Trainable Function Activation (STAF)について紹介する。
STAFは本質的に周波数成分を変調し、自己適応型スペクトル学習を可能にする。
論文 参考訳(メタデータ) (2025-02-02T18:29:33Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
本稿では,統計的特徴選択と分類技術を統合し,欠陥検出精度を向上させるハイブリッドフレームワークを提案する。
工業画像から抽出した55個の特徴を統計的手法を用いて解析した。
これらの手法をフレキシブルな機械学習アプリケーションに統合することにより、検出精度を改善し、偽陽性や誤分類を減らす。
論文 参考訳(メタデータ) (2024-12-11T22:12:21Z) - Frequency-aware Feature Fusion for Dense Image Prediction [99.85757278772262]
本稿では,高密度画像予測のための周波数認識機能融合(FreqFusion)を提案する。
FreqFusionは、Adaptive Low-Pass Filter (ALPF) ジェネレータ、オフセットジェネレータ、Adaptive High-Pass Filter (AHPF) ジェネレータを統合する。
包括的可視化と定量的分析は、FreqFusionが機能一貫性を効果的に改善し、オブジェクト境界を鋭くすることを示している。
論文 参考訳(メタデータ) (2024-08-23T07:30:34Z) - A Noise-robust Multi-head Attention Mechanism for Formation Resistivity Prediction: Frequency Aware LSTM [7.466740264582114]
生成比抵抗の予測は, 石油・ガス貯留層の評価において重要な役割を担っている。
従来の坑井検層技術では、ボアホールの正確な比抵抗を測定することができない。
周波数認識LSTMを構築するために,周波数認識フレームワークと時間的アンチノイズブロックを提案する。
論文 参考訳(メタデータ) (2024-06-06T08:31:52Z) - TDANet: A Novel Temporal Denoise Convolutional Neural Network With Attention for Fault Diagnosis [0.5277756703318045]
本稿では,音環境における故障診断性能を向上させるため,TDANet(Tunal Denoise Convolutional Neural Network With Attention)を提案する。
TDANetモデルは、その周期特性に基づいて1次元信号を2次元テンソルに変換し、マルチスケールの2次元畳み込みカーネルを用いて周期内および周期間の信号情報を抽出する。
CWRU (single sensor) とReal Aircraft Sensor Fault (multiple sensor) の2つのデータセットに対する評価は、TDANetモデルがノイズの多い環境下での診断精度において既存のディープラーニングアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-03-29T02:54:41Z) - Joint Attention-Guided Feature Fusion Network for Saliency Detection of
Surface Defects [69.39099029406248]
本稿では,エンコーダ・デコーダネットワークに基づく表面欠陥検出のための共同注意誘導型特徴融合ネットワーク(JAFFNet)を提案する。
JAFFNetは、主にJAFFモジュールをデコードステージに組み込んで、低レベルと高レベルの機能を適応的に融合させる。
SD- Saliency-900, Magnetic tile, and DAGM 2007 で行った実験から,本手法が他の最先端手法と比較して有望な性能を達成できたことが示唆された。
論文 参考訳(メタデータ) (2024-02-05T08:10:16Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
本研究では, 軸受破壊機構の因果性を学ぶために, 因果解離隠れマルコフモデル (CDHM) を提案する。
具体的には、時系列データをフル活用し、振動信号を断層関連要因と断層関連要因に段階的に分解する。
アプリケーションの範囲を広げるために、学習された非絡み合った表現を他の作業環境に転送するために、教師なしのドメイン適応を採用する。
論文 参考訳(メタデータ) (2023-08-06T05:58:45Z) - Diagnostic Spatio-temporal Transformer with Faithful Encoding [54.02712048973161]
本稿では,データ生成プロセスが複合時間(ST)依存性を持つ場合の異常診断の課題について述べる。
我々は、ST依存を時系列分類の副産物として学習する、教師付き依存発見として問題を定式化する。
既存のST変圧器で使用される時間的位置符号化は、高周波数(短時間スケール)の周波数をキャプチャする重大な制限を有することを示す。
また、空間的および時間的方向の両方で容易に消費可能な診断情報を提供する新しいST依存性発見フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-26T05:31:23Z) - Fault Detection and Diagnosis with Imbalanced and Noisy Data: A Hybrid
Framework for Rotating Machinery [2.580765958706854]
回転機械製造システムの保守コスト低減には, 故障診断が重要な役割を担っている。
従来のフォールト検出および診断(FDD)フレームワークは、現実の状況に対処する際のパフォーマンスが劣っている。
本稿では、上記の3つのコンポーネントを用いて、効果的な信号ベースFDDシステムを実現するハイブリッドフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-09T01:09:59Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
ノイズはデバイスの性能、特に量子コヒーレント回路に有害である。
最近の研究は、超伝導量子ビットへの単一のマグノンをベースとした量子技術にマグノンシステムを活用するためのルートを実証している。
時間的挙動を研究することは、基礎となるノイズ源を特定するのに役立つ。
論文 参考訳(メタデータ) (2021-07-14T08:00:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。