Collaborative Multi-LoRA Experts with Achievement-based Multi-Tasks Loss for Unified Multimodal Information Extraction
- URL: http://arxiv.org/abs/2505.06303v1
- Date: Thu, 08 May 2025 03:16:32 GMT
- Title: Collaborative Multi-LoRA Experts with Achievement-based Multi-Tasks Loss for Unified Multimodal Information Extraction
- Authors: Li Yuan, Yi Cai, Xudong Shen, Qing Li, Qingbao Huang, Zikun Deng, Tao Wang,
- Abstract summary: Multimodal Information Extraction (MIE) has gained attention for extracting structured information from multimedia sources.<n>Traditional methods tackle MIE tasks separately, missing opportunities to share knowledge across tasks.<n>We propose collaborative multi-LoRA experts with achievement-based multi-task loss for MIE tasks.
- Score: 28.800518091590117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Information Extraction (MIE) has gained attention for extracting structured information from multimedia sources. Traditional methods tackle MIE tasks separately, missing opportunities to share knowledge across tasks. Recent approaches unify these tasks into a generation problem using instruction-based T5 models with visual adaptors, optimized through full-parameter fine-tuning. However, this method is computationally intensive, and multi-task fine-tuning often faces gradient conflicts, limiting performance. To address these challenges, we propose collaborative multi-LoRA experts with achievement-based multi-task loss (C-LoRAE) for MIE tasks. C-LoRAE extends the low-rank adaptation (LoRA) method by incorporating a universal expert to learn shared multimodal knowledge from cross-MIE tasks and task-specific experts to learn specialized instructional task features. This configuration enhances the model's generalization ability across multiple tasks while maintaining the independence of various instruction tasks and mitigating gradient conflicts. Additionally, we propose an achievement-based multi-task loss to balance training progress across tasks, addressing the imbalance caused by varying numbers of training samples in MIE tasks. Experimental results on seven benchmark datasets across three key MIE tasks demonstrate that C-LoRAE achieves superior overall performance compared to traditional fine-tuning methods and LoRA methods while utilizing a comparable number of training parameters to LoRA.
Related papers
- Bigger, Regularized, Categorical: High-Capacity Value Functions are Efficient Multi-Task Learners [60.75160178669076]
We show that the use of high-capacity value models trained via cross-entropy and conditioned on learnable task embeddings addresses the problem of task interference in online reinforcement learning.<n>We test our approach on 7 multi-task benchmarks with over 280 unique tasks, spanning high degree-of-freedom humanoid control and discrete vision-based RL.
arXiv Detail & Related papers (2025-05-29T06:41:45Z) - MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning [74.43869839954168]
We propose MTL-LoRA, which retains the advantages of low-rank adaptation while significantly enhancing MTL capabilities.<n> MTL-LoRA augments LoRA by incorporating additional task-adaptive parameters that differentiate task-specific information and capture shared knowledge.<n>This approach enables pre-trained models to jointly adapt to different target domains with a limited number of trainable parameters.
arXiv Detail & Related papers (2024-10-12T08:32:26Z) - Multimodal Instruction Tuning with Conditional Mixture of LoRA [51.58020580970644]
This paper introduces a novel approach that integrates multimodal instruction tuning with Low-Rank Adaption (LoRA)<n>It innovates upon LoRA by dynamically constructing low-rank adaptation matrices tailored to the unique demands of each input instance.<n> Experimental results on various multimodal evaluation datasets indicate that MixLoRA not only outperforms the conventional LoRA with the same or even higher ranks.
arXiv Detail & Related papers (2024-02-24T20:15:31Z) - Task Selection and Assignment for Multi-modal Multi-task Dialogue Act
Classification with Non-stationary Multi-armed Bandits [11.682678945754837]
Multi-task learning (MTL) aims to improve the performance of a primary task by jointly learning with related auxiliary tasks.
Previous studies suggest that such a random selection of tasks may not be helpful, and can even be harmful to performance.
This paper proposes a method for selecting and assigning tasks based on non-stationary multi-armed bandits.
arXiv Detail & Related papers (2023-09-18T14:51:51Z) - Multi-task Hierarchical Adversarial Inverse Reinforcement Learning [40.60364143826424]
Multi-task Imitation Learning (MIL) aims to train a policy capable of performing a distribution of tasks based on multi-task expert demonstrations.
Existing MIL algorithms suffer from low data efficiency and poor performance on complex long-horizontal tasks.
We develop Multi-task Hierarchical Adversarial Inverse Reinforcement Learning (MH-AIRL) to learn hierarchically-structured multi-task policies.
arXiv Detail & Related papers (2023-05-22T01:58:40Z) - Mod-Squad: Designing Mixture of Experts As Modular Multi-Task Learners [74.92558307689265]
We propose Mod-Squad, a new model that is Modularized into groups of experts (a 'Squad')
We optimize this matching process during the training of a single model.
Experiments on the Taskonomy dataset with 13 vision tasks and the PASCAL-Context dataset with 5 vision tasks show the superiority of our approach.
arXiv Detail & Related papers (2022-12-15T18:59:52Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
We study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning.
We devise task-aware gating functions to route examples from different tasks to specialized experts.
This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model.
arXiv Detail & Related papers (2022-04-16T00:56:12Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
Multi-task learning aims to explore task relatedness to improve individual tasks.
We propose variational multi-task learning (VMTL), a general probabilistic inference framework for learning multiple related tasks.
arXiv Detail & Related papers (2021-11-09T18:49:45Z) - Gradient Surgery for Multi-Task Learning [119.675492088251]
Multi-task learning has emerged as a promising approach for sharing structure across multiple tasks.
The reasons why multi-task learning is so challenging compared to single-task learning are not fully understood.
We propose a form of gradient surgery that projects a task's gradient onto the normal plane of the gradient of any other task that has a conflicting gradient.
arXiv Detail & Related papers (2020-01-19T06:33:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.