Quasiprobabilistic imaginary-time evolution on quantum computers
- URL: http://arxiv.org/abs/2505.06343v2
- Date: Mon, 21 Jul 2025 15:19:25 GMT
- Title: Quasiprobabilistic imaginary-time evolution on quantum computers
- Authors: Annie Ray, Esha Swaroop, Ningping Cao, Michael Vasmer, Anirban Chowdhury,
- Abstract summary: We propose a new algorithm for computing imaginary-time evolved expectation values on quantum computers.<n>Our algorithm requires no ancillary qubits and can be made noise-resilient without additional error mitigation.
- Score: 0.3177496877224142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imaginary-time evolution plays an important role in algorithms for computing ground-state and thermal equilibrium properties of quantum systems, but can be challenging to simulate on classical computers. Many quantum algorithms for imaginary-time evolution have resource requirements that are prohibitive for current quantum devices and face performance issues due to noise. Here, we propose a new algorithm for computing imaginary-time evolved expectation values on quantum computers, inspired by probabilistic error cancellation, an error-mitigation technique. Our algorithm works by decomposing a Trotterization of imaginary-time evolution into a probabilistic linear combination of operations, each of which is then implemented on a quantum computer. The measurement data is then classically post-processed to obtain the expectation value of the imaginary-time evolved state. Our algorithm requires no ancillary qubits and can be made noise-resilient without additional error mitigation. It is well-suited for estimating thermal expectation values by making use of the notion of a thermal pure quantum state. We demonstrate our algorithm by performing numerical simulations of thermal pure quantum state preparation for the 1D Heisenberg Hamiltonian on 8 qubits, and by using an IBM quantum computer to estimate the energy of the same Hamiltonian on 2 qubits. We observe promising results compared to the exact values, illustrating the potential of our algorithm for probing the physics of quantum many-body systems on current hardware.
Related papers
- Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.<n>We focus on nuclear-physics applications and consider a qubit-efficient mapping on the lattice, which can efficiently represent the large volumes required for realistic scattering simulations.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Preparing thermal states on noiseless and noisy programmable quantum
processors [0.0]
We provide two quantum algorithms with provable guarantees to prepare thermal states on near-term quantum computers.
The first algorithm is inspired by the natural thermalization process where the ancilla qubits act as the infinite thermal bath.
The second algorithm works for any system and in general runs in exponential time.
arXiv Detail & Related papers (2021-12-29T18:06:36Z) - Error-resilient Monte Carlo quantum simulation of imaginary time [5.625946422295428]
We propose an algorithm for simulating the imaginary-time evolution and solving the ground-state problem.
Compared with quantum phase estimation, the Trotter step number can be thousands of times smaller.
Results show that Monte Carlo quantum simulation is promising even without a fully fault-tolerant quantum computer.
arXiv Detail & Related papers (2021-09-16T08:51:24Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Long-Time Error-Mitigating Simulation of Open Quantum Systems on Near Term Quantum Computers [38.860468003121404]
We study an open quantum system simulation on quantum hardware, which demonstrates robustness to hardware errors even with deep circuits containing up to two thousand entangling gates.
We simulate two systems of electrons coupled to an infinite thermal bath: 1) a system of dissipative free electrons in a driving electric field; and 2) the thermalization of two interacting electrons in a single orbital in a magnetic field -- the Hubbard atom.
Our results demonstrate that algorithms for simulating open quantum systems are able to far outperform similarly complex non-dissipative algorithms on noisy hardware.
arXiv Detail & Related papers (2021-08-02T21:36:37Z) - Computing Free Energies with Fluctuation Relations on Quantum Computers [0.0]
We present an algorithm utilizing a fluctuation relation known as the Jarzynski equality to approximate free energy differences of quantum systems on a quantum computer.
We successfully demonstrate a proof-of-concept of our algorithm using the transverse field Ising model on a real quantum processor.
arXiv Detail & Related papers (2021-03-17T18:14:19Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Real- and imaginary-time evolution with compressed quantum circuits [0.5089078998562184]
We show that quantum circuits can provide a dramatically more efficient representation than current classical numerics.
For quantum circuits, we perform both real- and imaginary-time evolution using an optimization algorithm that is feasible on near-term quantum computers.
arXiv Detail & Related papers (2020-08-24T11:16:43Z) - Just Like the Real Thing: Fast Weak Simulation of Quantum Computation [3.871968228840823]
We focus on weak simulation that aims to produce outputs which are statistically indistinguishable from those of error-free quantum computers.
We develop algorithms for weak simulation based on quantum state representation in terms of decision diagrams.
Empirical validation shows, for the first time, that this enables mimicking of physical quantum computers of significant scale.
arXiv Detail & Related papers (2020-07-30T08:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.