Latent Diffeomorphic Dynamic Mode Decomposition
- URL: http://arxiv.org/abs/2505.06351v2
- Date: Fri, 01 Aug 2025 13:56:46 GMT
- Title: Latent Diffeomorphic Dynamic Mode Decomposition
- Authors: Willem Diepeveen, Jon Schwenk, Andrea Bertozzi,
- Abstract summary: We present a new data reduction approach for the analysis of non-linear systems that combines the interpretability of Dynamic Mode Decomposition (DMD) with the predictive power of Recurrent Neural Networks (RNNs)<n> Notably, LDDMD maintains simplicity, which enhances interpretability, while effectively modeling and learning complex non-linear systems with memory, enabling accurate predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present Latent Diffeomorphic Dynamic Mode Decomposition (LDDMD), a new data reduction approach for the analysis of non-linear systems that combines the interpretability of Dynamic Mode Decomposition (DMD) with the predictive power of Recurrent Neural Networks (RNNs). Notably, LDDMD maintains simplicity, which enhances interpretability, while effectively modeling and learning complex non-linear systems with memory, enabling accurate predictions. This is exemplified by its successful application in streamflow prediction.
Related papers
- Tensor Dynamic Mode Decomposition [7.9882756082182675]
Dynamic mode decomposition (DMD) has become a powerful data-driven method for analyzing dynamics of complex, high-dimensional systems.<n>We propose tensor dynamic mode decomposition (TDMD), a extension of DMD to third-order tensors based on the recently developed T-product framework.<n>We demonstrate the effectiveness of TDMD on both synthetic and real-world datasets.
arXiv Detail & Related papers (2025-08-04T17:15:57Z) - Hybrid machine learning models based on physical patterns to accelerate CFD simulations: a short guide on autoregressive models [3.780691701083858]
This study presents an innovative integration of High-Order Singular Value Decomposition with Long Short-Term Memory (LSTM) architectures to address the complexities of reduced-order modeling (ROM) in fluid dynamics.<n>The methodology is tested across numerical and experimental data sets, including two- and three-dimensional (2D and 3D) cylinder wake flows, spanning both laminar and turbulent regimes.<n>The results demonstrate that HOSVD outperforms SVD in all tested scenarios, as evidenced by using different error metrics.
arXiv Detail & Related papers (2025-04-09T10:56:03Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Recurrent Stochastic Configuration Networks with Hybrid Regularization for Nonlinear Dynamics Modelling [3.8719670789415925]
Recurrent configuration networks (RSCNs) have shown great potential in modelling nonlinear dynamic systems with uncertainties.<n>This paper presents an RSCN with hybrid regularization to enhance both the learning capacity and generalization performance of the network.
arXiv Detail & Related papers (2024-11-26T03:06:39Z) - On latent dynamics learning in nonlinear reduced order modeling [0.6249768559720122]
We present the novel mathematical framework of latent dynamics models (LDMs) for reduced order modeling of parameterized nonlinear time-dependent PDEs.<n>A time-continuous setting is employed to derive error and stability estimates for the LDM approximation of the full order model (FOM) solution.<n>Deep neural networks approximate the discrete LDM components, while providing a bounded approximation error with respect to the FOM.
arXiv Detail & Related papers (2024-08-27T16:35:06Z) - Generalization capabilities and robustness of hybrid models grounded in physics compared to purely deep learning models [2.8686437689115363]
This study investigates the generalization capabilities and robustness of purely deep learning (DL) models and hybrid models based on physical principles in fluid dynamics applications.<n>Three autoregressive models were compared: a hybrid model (POD-DL) that combines proper decomposition (POD) with a long-short term memory (LSTM) layer, a convolutional autoencoder combined with a convolutional LSTM layer, and a variational autoencoder (VAE) combined with a ConvLSTM layer.<n>While the VAE and ConvLSTM models accurately predicted laminar flow, the hybrid POD-DL model outperformed the others
arXiv Detail & Related papers (2024-04-27T12:43:02Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
We propose a neural dynamic mode decomposition for estimating a lift function based on neural networks.
With our proposed method, the forecast error is backpropagated through the neural networks and the spectral decomposition.
Our experiments demonstrate the effectiveness of our proposed method in terms of eigenvalue estimation and forecast performance.
arXiv Detail & Related papers (2020-12-11T08:34:26Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.