Hybrid machine learning models based on physical patterns to accelerate CFD simulations: a short guide on autoregressive models
- URL: http://arxiv.org/abs/2504.06774v1
- Date: Wed, 09 Apr 2025 10:56:03 GMT
- Title: Hybrid machine learning models based on physical patterns to accelerate CFD simulations: a short guide on autoregressive models
- Authors: Arindam Sengupta, Rodrigo Abadía-Heredia, Ashton Hetherington, José Miguel Pérez, Soledad Le Clainche,
- Abstract summary: This study presents an innovative integration of High-Order Singular Value Decomposition with Long Short-Term Memory (LSTM) architectures to address the complexities of reduced-order modeling (ROM) in fluid dynamics.<n>The methodology is tested across numerical and experimental data sets, including two- and three-dimensional (2D and 3D) cylinder wake flows, spanning both laminar and turbulent regimes.<n>The results demonstrate that HOSVD outperforms SVD in all tested scenarios, as evidenced by using different error metrics.
- Score: 3.780691701083858
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate modeling of the complex dynamics of fluid flows is a fundamental challenge in computational physics and engineering. This study presents an innovative integration of High-Order Singular Value Decomposition (HOSVD) with Long Short-Term Memory (LSTM) architectures to address the complexities of reduced-order modeling (ROM) in fluid dynamics. HOSVD improves the dimensionality reduction process by preserving multidimensional structures, surpassing the limitations of Singular Value Decomposition (SVD). The methodology is tested across numerical and experimental data sets, including two- and three-dimensional (2D and 3D) cylinder wake flows, spanning both laminar and turbulent regimes. The emphasis is also on exploring how the depth and complexity of LSTM architectures contribute to improving predictive performance. Simpler architectures with a single dense layer effectively capture the periodic dynamics, demonstrating the network's ability to model non-linearities and chaotic dynamics. The addition of extra layers provides higher accuracy at minimal computational cost. These additional layers enable the network to expand its representational capacity, improving the prediction accuracy and reliability. The results demonstrate that HOSVD outperforms SVD in all tested scenarios, as evidenced by using different error metrics. Efficient mode truncation by HOSVD-based models enables the capture of complex temporal patterns, offering reliable predictions even in challenging, noise-influenced data sets. The findings underscore the adaptability and robustness of HOSVD-LSTM architectures, offering a scalable framework for modeling fluid dynamics.
Related papers
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks [3.1484174280822845]
We present a method to jointly solve the sensing and model identification problems with simple implementation, efficient, and robust performance.<n>SINDy-SHRED uses Gated Recurrent Units to model sparse sensor measurements along with a shallow network decoder to reconstruct the full-temporal field from the latent state space.<n>We conduct systematic experimental studies on PDE data such as turbulent flows, real-world sensor measurements for sea surface temperature, and direct video data.
arXiv Detail & Related papers (2025-01-23T02:18:13Z) - Generalization capabilities and robustness of hybrid models grounded in physics compared to purely deep learning models [2.8686437689115363]
This study investigates the generalization capabilities and robustness of purely deep learning (DL) models and hybrid models based on physical principles in fluid dynamics applications.<n>Three autoregressive models were compared: a hybrid model (POD-DL) that combines proper decomposition (POD) with a long-short term memory (LSTM) layer, a convolutional autoencoder combined with a convolutional LSTM layer, and a variational autoencoder (VAE) combined with a ConvLSTM layer.<n>While the VAE and ConvLSTM models accurately predicted laminar flow, the hybrid POD-DL model outperformed the others
arXiv Detail & Related papers (2024-04-27T12:43:02Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Forecasting through deep learning and modal decomposition in two-phase
concentric jets [2.362412515574206]
This work aims to improve fuel chamber injectors' performance in turbofan engines.
It requires the development of models that allow real-time prediction and improvement of the fuel/air mixture.
arXiv Detail & Related papers (2022-12-24T12:59:41Z) - Digital Twin Data Modelling by Randomized Orthogonal Decomposition and Deep Learning [0.0]
A digital twin is a surrogate model that has the main feature to mirror the original process behavior.
This paper introduces a new framework for creating efficient digital twin models of fluid flows.
We involve the state-of-the-art artificial intelligence Deep Learning (DL) to perform a real-time adaptive calibration of the digital twin model.
arXiv Detail & Related papers (2022-06-17T09:45:04Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.