Direct Data Driven Control Using Noisy Measurements
- URL: http://arxiv.org/abs/2505.06407v1
- Date: Fri, 09 May 2025 20:09:44 GMT
- Title: Direct Data Driven Control Using Noisy Measurements
- Authors: Ramin Esmzad, Gokul S. Sankar, Teawon Han, Hamidreza Modares,
- Abstract summary: This paper presents a novel direct data-driven control framework for solving the linear quadratic regulator (LQR) under disturbances and noisy state measurements.<n>Our approach guarantees mean-square stability (MSS) and optimal performance by leveraging convex optimization techniques.<n>The proposed framework offers a practical and theoretically grounded solution for controller design in noise-corrupted environments.
- Score: 6.157271985036265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel direct data-driven control framework for solving the linear quadratic regulator (LQR) under disturbances and noisy state measurements. The system dynamics are assumed unknown, and the LQR solution is learned using only a single trajectory of noisy input-output data while bypassing system identification. Our approach guarantees mean-square stability (MSS) and optimal performance by leveraging convex optimization techniques that incorporate noise statistics directly into the controller synthesis. First, we establish a theoretical result showing that the MSS of an uncertain data-driven system implies the MSS of the true closed-loop system. Building on this, we develop a robust stability condition using linear matrix inequalities (LMIs) that yields a stabilizing controller gain from noisy measurements. Finally, we formulate a data-driven LQR problem as a semidefinite program (SDP) that computes an optimal gain, minimizing the steady-state covariance. Extensive simulations on benchmark systems -- including a rotary inverted pendulum and an active suspension system -- demonstrate the superior robustness and accuracy of our method compared to existing data-driven LQR approaches. The proposed framework offers a practical and theoretically grounded solution for controller design in noise-corrupted environments where system identification is infeasible.
Related papers
- LMI-based Data-Driven Robust Model Predictive Control [0.1473281171535445]
We propose a data-driven robust linear matrix inequality-based model predictive control scheme that considers input and state constraints.
The controller stabilizes the closed-loop system and guarantees constraint satisfaction.
arXiv Detail & Related papers (2023-03-08T18:20:06Z) - Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal
Abstractions [59.605246463200736]
We present a novel controller synthesis method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous control system into a finite-state model that captures noise by probabilistic transitions between discrete states.
We use state-of-the-art verification techniques to provide guarantees on the interval Markov decision process and compute a controller for which these guarantees carry over to the original control system.
arXiv Detail & Related papers (2023-01-04T10:40:30Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - Adaptive Stochastic MPC under Unknown Noise Distribution [19.03553854357296]
We address the MPC problem for linear systems, subject to chance state constraints and hard input constraints, under unknown noise distribution.
We design a distributionally robust and robustly stable benchmark SMPC algorithm for the ideal setting of known noise statistics.
We employ this benchmark controller to derive a novel adaptive SMPC scheme that learns the necessary noise statistics online.
arXiv Detail & Related papers (2022-04-03T16:35:18Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Stable Online Control of Linear Time-Varying Systems [49.41696101740271]
COCO-LQ is an efficient online control algorithm that guarantees input-to-state stability for a large class of LTV systems.
We empirically demonstrate the performance of COCO-LQ in both synthetic experiments and a power system frequency control example.
arXiv Detail & Related papers (2021-04-29T06:18:49Z) - Robust Data-Driven Predictive Control using Reachability Analysis [6.686241050151697]
We present a robust data-driven control scheme for unknown linear systems with a bounded process and measurement noise.
The data-driven reachable regions are computed based on only noisy input-output data of a trajectory of the system.
In the noise-free case, we prove that the presented purely data-driven control scheme results in an equivalent closed-loop behavior to a nominal model predictive control scheme.
arXiv Detail & Related papers (2021-03-25T19:55:15Z) - Data-Driven System Level Synthesis [2.335152769484957]
We show that optimization problems over system-responses can be posed using only libraries of past system trajectories.
We first consider the idealized setting of noise free trajectories, and show an exact equivalence between traditional and data-driven SLS.
We then show that in the case of a system driven by process noise, tools from robust SLS can be used to characterize the effects of noise on closed-loop performance.
arXiv Detail & Related papers (2020-11-20T22:52:29Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Learning Stabilizing Controllers for Unstable Linear Quadratic
Regulators from a Single Trajectory [85.29718245299341]
We study linear controllers under quadratic costs model also known as linear quadratic regulators (LQR)
We present two different semi-definite programs (SDP) which results in a controller that stabilizes all systems within an ellipsoid uncertainty set.
We propose an efficient data dependent algorithm -- textsceXploration -- that with high probability quickly identifies a stabilizing controller.
arXiv Detail & Related papers (2020-06-19T08:58:57Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.