Engineering Risk-Aware, Security-by-Design Frameworks for Assurance of Large-Scale Autonomous AI Models
- URL: http://arxiv.org/abs/2505.06409v1
- Date: Fri, 09 May 2025 20:14:53 GMT
- Title: Engineering Risk-Aware, Security-by-Design Frameworks for Assurance of Large-Scale Autonomous AI Models
- Authors: Krti Tallam,
- Abstract summary: This paper presents an enterprise-level, risk-aware, security-by-design approach for large-scale autonomous AI systems.<n>We detail a unified pipeline that delivers provable guarantees of model behavior under adversarial and operational stress.<n>Case studies in national security, open-source model governance, and industrial automation demonstrate measurable reductions in vulnerability and compliance overhead.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As AI models scale to billions of parameters and operate with increasing autonomy, ensuring their safe, reliable operation demands engineering-grade security and assurance frameworks. This paper presents an enterprise-level, risk-aware, security-by-design approach for large-scale autonomous AI systems, integrating standardized threat metrics, adversarial hardening techniques, and real-time anomaly detection into every phase of the development lifecycle. We detail a unified pipeline - from design-time risk assessments and secure training protocols to continuous monitoring and automated audit logging - that delivers provable guarantees of model behavior under adversarial and operational stress. Case studies in national security, open-source model governance, and industrial automation demonstrate measurable reductions in vulnerability and compliance overhead. Finally, we advocate cross-sector collaboration - uniting engineering teams, standards bodies, and regulatory agencies - to institutionalize these technical safeguards within a resilient, end-to-end assurance ecosystem for the next generation of AI.
Related papers
- A Verification Methodology for Safety Assurance of Robotic Autonomous Systems [0.44241702149260353]
This paper presents a verification workflow for the safety assurance of an autonomous agricultural robot.<n>It covers the entire development life-cycle, from concept study and design to runtime verification.<n>Results show that the methodology can be effectively used to verify safety-critical properties and facilitate the early identification of design issues.
arXiv Detail & Related papers (2025-06-24T13:39:51Z) - Towards provable probabilistic safety for scalable embodied AI systems [79.31011047593492]
Embodied AI systems are increasingly prevalent across various applications.<n> Ensuring their safety in complex operating environments remains a major challenge.<n>This Perspective offers a pathway toward safer, large-scale adoption of embodied AI systems in safety-critical applications.
arXiv Detail & Related papers (2025-06-05T15:46:25Z) - Generating Automotive Code: Large Language Models for Software Development and Verification in Safety-Critical Systems [21.595590728109226]
The framework uses Large Language Models (LLMs) to automate code generation in languages such as C++.<n>A feedback-driven pipeline ensures the integration of test, simulation and verification for compliance with safety standards.
arXiv Detail & Related papers (2025-06-04T15:01:59Z) - SafeAgent: Safeguarding LLM Agents via an Automated Risk Simulator [77.86600052899156]
Large Language Model (LLM)-based agents are increasingly deployed in real-world applications.<n>We propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation.<n>We show that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks.
arXiv Detail & Related papers (2025-05-23T10:56:06Z) - ThreatLens: LLM-guided Threat Modeling and Test Plan Generation for Hardware Security Verification [1.0816123715383426]
ThreatLens is a multi-agent framework that automates security threat modeling and test plan generation for hardware security verification.<n>The framework reduces the manual verification effort, enhances coverage, and ensures a structured, adaptable approach to security verification.
arXiv Detail & Related papers (2025-05-11T03:10:39Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
We introduce AISafetyLab, a unified framework and toolkit that integrates representative attack, defense, and evaluation methodologies for AI safety.<n> AISafetyLab features an intuitive interface that enables developers to seamlessly apply various techniques.<n>We conduct empirical studies on Vicuna, analyzing different attack and defense strategies to provide valuable insights into their comparative effectiveness.
arXiv Detail & Related papers (2025-02-24T02:11:52Z) - Reliability, Resilience and Human Factors Engineering for Trustworthy AI Systems [6.120331132009475]
We offer a framework that integrates established reliability and resilience engineering principles into AI systems.
We propose an integrate framework to manage AI system performance, and prevent or efficiently recover from failures.
We apply our framework to a real-world AI system, using system status data from platforms such as openAI, to demonstrate its practical applicability.
arXiv Detail & Related papers (2024-11-13T19:16:44Z) - Safeguarding AI Agents: Developing and Analyzing Safety Architectures [0.0]
This paper addresses the need for safety measures in AI systems that collaborate with human teams.<n>We propose and evaluate three frameworks to enhance safety protocols in AI agent systems.<n>We conclude that these frameworks can significantly strengthen the safety and security of AI agent systems.
arXiv Detail & Related papers (2024-09-03T10:14:51Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.<n>Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.<n>However, the deployment of these agents in physical environments presents significant safety challenges.<n>This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.