Reliability, Resilience and Human Factors Engineering for Trustworthy AI Systems
- URL: http://arxiv.org/abs/2411.08981v1
- Date: Wed, 13 Nov 2024 19:16:44 GMT
- Title: Reliability, Resilience and Human Factors Engineering for Trustworthy AI Systems
- Authors: Saurabh Mishra, Anand Rao, Ramayya Krishnan, Bilal Ayyub, Amin Aria, Enrico Zio,
- Abstract summary: We offer a framework that integrates established reliability and resilience engineering principles into AI systems.
We propose an integrate framework to manage AI system performance, and prevent or efficiently recover from failures.
We apply our framework to a real-world AI system, using system status data from platforms such as openAI, to demonstrate its practical applicability.
- Score: 6.120331132009475
- License:
- Abstract: As AI systems become integral to critical operations across industries and services, ensuring their reliability and safety is essential. We offer a framework that integrates established reliability and resilience engineering principles into AI systems. By applying traditional metrics such as failure rate and Mean Time Between Failures (MTBF) along with resilience engineering and human reliability analysis, we propose an integrate framework to manage AI system performance, and prevent or efficiently recover from failures. Our work adapts classical engineering methods to AI systems and outlines a research agenda for future technical studies. We apply our framework to a real-world AI system, using system status data from platforms such as openAI, to demonstrate its practical applicability. This framework aligns with emerging global standards and regulatory frameworks, providing a methodology to enhance the trustworthiness of AI systems. Our aim is to guide policy, regulation, and the development of reliable, safe, and adaptable AI technologies capable of consistent performance in real-world environments.
Related papers
- Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Quantifying AI Vulnerabilities: A Synthesis of Complexity, Dynamical Systems, and Game Theory [0.0]
We propose a novel approach that introduces three metrics: System Complexity Index (SCI), Lyapunov Exponent for AI Stability (LEAIS), and Nash Equilibrium Robustness (NER)
SCI quantifies the inherent complexity of an AI system, LEAIS captures its stability and sensitivity to perturbations, and NER evaluates its strategic robustness against adversarial manipulation.
arXiv Detail & Related papers (2024-04-07T07:05:59Z) - No Trust without regulation! [0.0]
The explosion in performance of Machine Learning (ML) and the potential of its applications are encouraging us to consider its use in industrial systems.
It is still leaving too much to one side the issue of safety and its corollary, regulation and standards.
The European Commission has laid the foundations for moving forward and building solid approaches to the integration of AI-based applications that are safe, trustworthy and respect European ethical values.
arXiv Detail & Related papers (2023-09-27T09:08:41Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022 [0.0]
The RAISA workshop will focus on research, development and application of robust artificial intelligence (AI) and machine learning (ML) systems.
Rather than studying robustness with respect to particular ML algorithms, our approach will be to explore robustness assurance at the system architecture level.
arXiv Detail & Related papers (2022-02-10T01:15:50Z) - Statistical Perspectives on Reliability of Artificial Intelligence
Systems [6.284088451820049]
We provide statistical perspectives on the reliability of AI systems.
We introduce a so-called SMART statistical framework for AI reliability research.
We discuss recent developments in modeling and analysis of AI reliability.
arXiv Detail & Related papers (2021-11-09T20:00:14Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
We provide an industry research view for approaching the design, deployment, and operation of trustworthy AI inference systems.
We highlight opportunities and challenges in AI systems using trusted execution environments.
We outline areas of further development that require the global collective attention of industry, academia, and government researchers.
arXiv Detail & Related papers (2020-08-10T23:05:55Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z) - AAAI FSS-19: Human-Centered AI: Trustworthiness of AI Models and Data
Proceedings [8.445274192818825]
It is crucial for predictive models to be uncertainty-aware and yield trustworthy predictions.
The focus of this symposium was on AI systems to improve data quality and technical robustness and safety.
submissions from broadly defined areas also discussed approaches addressing requirements such as explainable models, human trust and ethical aspects of AI.
arXiv Detail & Related papers (2020-01-15T15:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.