HCMA: Hierarchical Cross-model Alignment for Grounded Text-to-Image Generation
- URL: http://arxiv.org/abs/2505.06512v3
- Date: Thu, 15 May 2025 01:04:26 GMT
- Title: HCMA: Hierarchical Cross-model Alignment for Grounded Text-to-Image Generation
- Authors: Hang Wang, Zhi-Qi Cheng, Chenhao Lin, Chao Shen, Lei Zhang,
- Abstract summary: We propose a Hierarchical Cross-Modal Alignment (HCMA) framework for grounded text-to-image generation.<n>HCMA integrates two alignment modules into each diffusion sampling step.<n>Experiments on the MS-COCO 2014 validation set show that HCMA surpasses state-of-the-art baselines.
- Score: 27.770224730465237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image synthesis has progressed to the point where models can generate visually compelling images from natural language prompts. Yet, existing methods often fail to reconcile high-level semantic fidelity with explicit spatial control, particularly in scenes involving multiple objects, nuanced relations, or complex layouts. To bridge this gap, we propose a Hierarchical Cross-Modal Alignment (HCMA) framework for grounded text-to-image generation. HCMA integrates two alignment modules into each diffusion sampling step: a global module that continuously aligns latent representations with textual descriptions to ensure scene-level coherence, and a local module that employs bounding-box layouts to anchor objects at specified locations, enabling fine-grained spatial control. Extensive experiments on the MS-COCO 2014 validation set show that HCMA surpasses state-of-the-art baselines, achieving a 0.69 improvement in Frechet Inception Distance (FID) and a 0.0295 gain in CLIP Score. These results demonstrate HCMA's effectiveness in faithfully capturing intricate textual semantics while adhering to user-defined spatial constraints, offering a robust solution for semantically grounded image generation. Our code is available at https://github.com/hwang-cs-ime/HCMA.
Related papers
- Visual Semantic Description Generation with MLLMs for Image-Text Matching [7.246705430021142]
We propose a novel framework that bridges the modality gap by leveraging multimodal large language models (MLLMs) as visual semantics.<n>Our approach combines: (1) Instance-level alignment by fusing visual features with VSD to enhance the linguistic expressiveness of image representations, and (2) Prototype-level alignment through VSD clustering to ensure category-level consistency.
arXiv Detail & Related papers (2025-07-11T13:38:01Z) - Scale-wise Bidirectional Alignment Network for Referring Remote Sensing Image Segmentation [12.893224628061516]
The goal of referring remote sensing image segmentation (RRSIS) is to extract specific pixel-level regions within an aerial image via a natural language expression.<n>We propose an innovative framework called Scale-wise Bidirectional Alignment Network (SBANet) to address these challenges.<n>Our proposed method achieves superior performance in comparison to previous state-of-the-art methods on the RRSIS-D and RefSegRS datasets.
arXiv Detail & Related papers (2025-01-01T14:24:04Z) - Cross-Modal Bidirectional Interaction Model for Referring Remote Sensing Image Segmentation [50.433911327489554]
The goal of referring remote sensing image segmentation (RRSIS) is to generate a pixel-level mask of the target object identified by the referring expression.<n>To address the aforementioned challenges, a novel RRSIS framework is proposed, termed the cross-modal bidirectional interaction model (CroBIM)<n>To further forster the research of RRSIS, we also construct RISBench, a new large-scale benchmark dataset comprising 52,472 image-language-label triplets.
arXiv Detail & Related papers (2024-10-11T08:28:04Z) - DIAL: Dense Image-text ALignment for Weakly Supervised Semantic Segmentation [8.422110274212503]
Weakly supervised semantic segmentation approaches typically rely on class activation maps (CAMs) for initial seed generation.
We introduce DALNet, which leverages text embeddings to enhance the comprehensive understanding and precise localization of objects across different levels of granularity.
Our approach, in particular, allows for more efficient end-to-end process as a single-stage method.
arXiv Detail & Related papers (2024-09-24T06:51:49Z) - Focus on Neighbors and Know the Whole: Towards Consistent Dense Multiview Text-to-Image Generator for 3D Creation [64.07560335451723]
CoSER is a novel consistent dense Multiview Text-to-Image Generator for Text-to-3D.
It achieves both efficiency and quality by meticulously learning neighbor-view coherence.
It aggregates information along motion paths explicitly defined by physical principles to refine details.
arXiv Detail & Related papers (2024-08-23T15:16:01Z) - LoCo: Locally Constrained Training-Free Layout-to-Image Synthesis [24.925757148750684]
We propose a training-free approach for layout-to-image Synthesis that excels in producing high-quality images aligned with both textual prompts and layout instructions.
LoCo seamlessly integrates into existing text-to-image and layout-to-image models, enhancing their performance in spatial control and addressing semantic failures observed in prior methods.
arXiv Detail & Related papers (2023-11-21T04:28:12Z) - Enhancing Object Coherence in Layout-to-Image Synthesis [2.3805413240744304]
We propose a novel diffusion model with effective global semantic fusion (GSF) and self-similarity feature enhancement modules to guide the object coherence.<n>For semantic coherence, we argue that the image caption contains rich information for defining the semantic relationship within the objects in the images.<n>To improve the physical coherence, we develop a Self-similarity Coherence Attention synthesis (SCA) module to explicitly integrate local contextual physical coherence relation into each pixel's generation process.
arXiv Detail & Related papers (2023-11-17T13:43:43Z) - SSMG: Spatial-Semantic Map Guided Diffusion Model for Free-form
Layout-to-Image Generation [68.42476385214785]
We propose a novel Spatial-Semantic Map Guided (SSMG) diffusion model that adopts the feature map, derived from the layout, as guidance.
SSMG achieves superior generation quality with sufficient spatial and semantic controllability compared to previous works.
We also propose the Relation-Sensitive Attention (RSA) and Location-Sensitive Attention (LSA) mechanisms.
arXiv Detail & Related papers (2023-08-20T04:09:12Z) - LAW-Diffusion: Complex Scene Generation by Diffusion with Layouts [107.11267074981905]
We propose a semantically controllable layout-AWare diffusion model, termed LAW-Diffusion.
We show that LAW-Diffusion yields the state-of-the-art generative performance, especially with coherent object relations.
arXiv Detail & Related papers (2023-08-13T08:06:18Z) - RealignDiff: Boosting Text-to-Image Diffusion Model with Coarse-to-fine Semantic Re-alignment [112.45442468794658]
We propose a two-stage coarse-to-fine semantic re-alignment method, named RealignDiff.
In the coarse semantic re-alignment phase, a novel caption reward is proposed to evaluate the semantic discrepancy between the generated image caption and the given text prompt.
The fine semantic re-alignment stage employs a local dense caption generation module and a re-weighting attention modulation module to refine the previously generated images from a local semantic view.
arXiv Detail & Related papers (2023-05-31T06:59:21Z) - Image-Specific Information Suppression and Implicit Local Alignment for
Text-based Person Search [61.24539128142504]
Text-based person search (TBPS) is a challenging task that aims to search pedestrian images with the same identity from an image gallery given a query text.
Most existing methods rely on explicitly generated local parts to model fine-grained correspondence between modalities.
We propose an efficient joint Multi-level Alignment Network (MANet) for TBPS, which can learn aligned image/text feature representations between modalities at multiple levels.
arXiv Detail & Related papers (2022-08-30T16:14:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.