論文の概要: Adversarial Coevolutionary Illumination with Generational Adversarial MAP-Elites
- arxiv url: http://arxiv.org/abs/2505.06617v1
- Date: Sat, 10 May 2025 12:00:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:48.942937
- Title: Adversarial Coevolutionary Illumination with Generational Adversarial MAP-Elites
- Title(参考訳): 世代逆転MAP-エリートを用いた逆転共進化イルミネーション
- Authors: Timothée Anne, Noah Syrkis, Meriem Elhosni, Florian Turati, Franck Legendre, Alain Jaquier, Sebastian Risi,
- Abstract要約: 品質多様性(QD)アルゴリズムは、特定の行動空間をカバーする高性能なソリューションを見つけることにより、探索空間を照らす。
そこで本研究では,複数世代にまたがって解決策を共進化させる新しいQDアルゴリズムであるGenerational Adversarial MAP-Elites (GAME)を提案する。
- 参考スコア(独自算出の注目度): 6.721923873906492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unlike traditional optimization algorithms focusing on finding a single optimal solution, Quality-Diversity (QD) algorithms illuminate a search space by finding high-performing solutions that cover a specified behavior space. However, tackling adversarial problems is more challenging due to the behavioral interdependence between opposing sides. Most applications of QD algorithms to these problems evolve only one side, thus reducing illumination coverage. In this paper, we propose a new QD algorithm, Generational Adversarial MAP-Elites (GAME), which coevolves solutions by alternating sides through a sequence of generations. Combining GAME with vision embedding models enables the algorithm to directly work from videos of behaviors instead of handcrafted descriptors. Some key findings are that (1) emerging evolutionary dynamics sometimes resemble an arms race, (2) starting each generation from scratch increases open-endedness, and (3) keeping neutral mutations preserves stepping stones that seem necessary to reach the highest performance. In conclusion, the results demonstrate that GAME can successfully illuminate an adversarial multi-agent game, opening up interesting future directions in understanding the emergence of open-ended coevolution.
- Abstract(参考訳): 単一の最適解を見つけることに焦点を当てた従来の最適化アルゴリズムとは異なり、QD(Quality-Diversity)アルゴリズムは特定の振る舞い空間をカバーする高性能な解を見つけることによって探索空間を照らす。
しかし, 対向問題への対処は, 相手同士の行動相互依存により, より困難である。
これらの問題に対するQDアルゴリズムのほとんどの応用は一方だけを進化させ、照明のカバレッジを減少させる。
本稿では,複数世代を交互に組み合わせて解を進化させる新しいQDアルゴリズム,Generational Adversarial MAP-Elites (GAME)を提案する。
GAMEと視覚埋め込みモデルを組み合わせることで、手作りのディスクリプタではなく、行動のビデオから直接処理することができる。
主な発見は、(1)進化力学の出現は、時に腕のレースに類似し、(2)スクラッチからそれぞれの世代をスタートさせると、開放性が高くなり、(3)中立突然変異を維持することは、最高のパフォーマンスに達するのに必要と思われるステップストーンを保存することである。
その結果, GAMEは対戦型マルチエージェントゲームの実現に成功し, オープン・エンド・コエボリューションの出現を理解する上で, 今後の方向性を明らかにすることができた。
関連論文リスト
- Don't Bet on Luck Alone: Enhancing Behavioral Reproducibility of
Quality-Diversity Solutions in Uncertain Domains [2.639902239625779]
アーカイブ再現性向上アルゴリズム(ARIA)を紹介する。
ARIAは、アーカイブに存在するソリューションの品質を改善するプラグイン・アンド・プレイのアプローチである。
提案アルゴリズムは,任意のアーカイブの品質とディスクリプタ空間のカバレッジを少なくとも50%向上させることを示す。
論文 参考訳(メタデータ) (2023-04-07T14:45:14Z) - Differentiable Bilevel Programming for Stackelberg Congestion Games [47.60156422249365]
Stackelberg Congestion Game (SCG) において、リーダーは、群集が集まる平衡状態を予測し、操作することで、自身の利益を最大化することを目的としている。
本稿では,従来の手法と機械学習における最新の微分可能プログラミング技術を組み合わせることで,この計算課題に挑戦する。
本稿では,SCGの局所探索アルゴリズムを2つ提案する。第1に,微分可能プログラミングを用いてILDをアンロールすることで導関数を求める勾配降下アルゴリズムを提案する。
第二のアルゴリズムは、フォロワーの進化軌道を短くすることでツイストを加える。
論文 参考訳(メタデータ) (2022-09-15T21:32:23Z) - Runtime Analysis of Competitive co-Evolutionary Algorithms for Maximin Optimisation of a Bilinear Function [1.3053649021965603]
共進化的アルゴリズムには、ハードウェア設計、ボードゲーム戦略の進化、ソフトウェアバグのパッチなど、幅広い応用がある。
共進化的アルゴリズムが解を効率的にかつ確実に見つけることを予測できる理論を開発することは、オープンな挑戦である。
本稿では,人口ベース競争共進化型アルゴリズムのランタイム解析開発における第一歩について述べる。
論文 参考訳(メタデータ) (2022-06-30T12:35:36Z) - An Effective and Efficient Evolutionary Algorithm for Many-Objective
Optimization [2.5594423685710814]
様々な多目的問題に対処できる効率的な進化的アルゴリズム(E3A)を開発した。
SDEにインスパイアされたE3Aでは,新しい集団維持法が提案されている。
我々は、広範囲な実験を行い、E3Aが11の最先端の多目的進化アルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-05-31T15:35:46Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
両目的探索問題として結果の多様化問題を再構成し,多目的進化アルゴリズム(EA)を用いて解くことを提案する。
GSEMOが最適時間近似比1/2$を達成できることを理論的に証明する。
目的関数が動的に変化すると、GSEMOはこの近似比をランニングタイムで維持することができ、Borodinらによって提案されたオープンな問題に対処する。
論文 参考訳(メタデータ) (2021-10-18T14:00:22Z) - Portfolio Search and Optimization for General Strategy Game-Playing [58.896302717975445]
ローリングホライズン進化アルゴリズムに基づく最適化とアクション選択のための新しいアルゴリズムを提案する。
エージェントのパラメータとポートフォリオセットの最適化について,N-tuple Bandit Evolutionary Algorithmを用いて検討する。
エージェントの性能分析により,提案手法はすべてのゲームモードによく一般化し,他のポートフォリオ手法よりも優れることが示された。
論文 参考訳(メタデータ) (2021-04-21T09:28:28Z) - Selection-Expansion: A Unifying Framework for Motion-Planning and
Diversity Search Algorithms [69.87173070473717]
本稿では,2つの多様性探索アルゴリズム,ノベルティ探索アルゴリズムとゴール探索処理アルゴリズムの特性について検討する。
mpアルゴリズムとの関係は、ポリシーパラメータ空間と結果空間の間のマッピングの滑らかさ、あるいは滑らかさの欠如が検索効率において重要な役割を担っていることを示している。
論文 参考訳(メタデータ) (2021-04-10T13:52:27Z) - On Population-Based Algorithms for Distributed Constraint Optimization
Problems [12.21350091202884]
我々は、人口ベースのアルゴリズムとして広く呼ばれる、新しい不完全アルゴリズムのクラスについて研究する。
最初のアプローチであるAnytime Evolutionary DCOP(AED)は、進化最適化メタヒューリスティックを利用してDCOPを解く。
第2のコントリビューションでは、人口ベースのアプローチと局所的な検索アプローチを組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-09-02T06:39:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。