論文の概要: Dynamic Domain Information Modulation Algorithm for Multi-domain Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2505.06630v1
- Date: Sat, 10 May 2025 12:36:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:48.948359
- Title: Dynamic Domain Information Modulation Algorithm for Multi-domain Sentiment Analysis
- Title(参考訳): 多領域感性分析のための動的ドメイン情報変調アルゴリズム
- Authors: Chunyi Yue, Ang Li,
- Abstract要約: マルチドメインの感情分類は、単一のドメインにおけるラベル付きデータの不足により、貧弱なパフォーマンスモデルを軽減することを目的としている。
本稿では,各領域の感情分類に必要な領域情報を効率的に生成する動的情報変調アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 8.257032486349246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-domain sentiment classification aims to mitigate poor performance models due to the scarcity of labeled data in a single domain, by utilizing data labeled from various domains. A series of models that jointly train domain classifiers and sentiment classifiers have demonstrated their advantages, because domain classification helps generate necessary information for sentiment classification. Intuitively, the importance of sentiment classification tasks is the same in all domains for multi-domain sentiment classification; but domain classification tasks are different because the impact of domain information on sentiment classification varies across different fields; this can be controlled through adjustable weights or hyper parameters. However, as the number of domains increases, existing hyperparameter optimization algorithms may face the following challenges: (1) tremendous demand for computing resources, (2) convergence problems, and (3) high algorithm complexity. To efficiently generate the domain information required for sentiment classification in each domain, we propose a dynamic information modulation algorithm. Specifically, the model training process is divided into two stages. In the first stage, a shared hyperparameter, which would control the proportion of domain classification tasks across all fields, is determined. In the second stage, we introduce a novel domain-aware modulation algorithm to adjust the domain information contained in the input text, which is then calculated based on a gradient-based and loss-based method. In summary, experimental results on a public sentiment analysis dataset containing 16 domains prove the superiority of the proposed method.
- Abstract(参考訳): マルチドメイン感情分類は、複数のドメインからラベル付けされたデータを利用することにより、単一のドメインにおけるラベル付きデータの不足による、パフォーマンスの悪いモデルを軽減することを目的としている。
ドメイン分類は、感情分類に必要な情報を生成するのに役立つため、ドメイン分類器と感情分類器を共同で訓練する一連のモデルがその利点を示している。
直感的には、マルチドメインの感情分類において、感情分類タスクの重要性は同じであるが、ドメイン情報の感情分類への影響は異なるため、ドメイン分類タスクは異なる。
しかし、ドメイン数が増加するにつれて、既存のハイパーパラメータ最適化アルゴリズムは、(1)計算資源の膨大な需要、(2)収束問題、(3)アルゴリズムの複雑さといった課題に直面している。
感情分類に必要な領域情報を各領域で効率的に生成するために,動的情報変調アルゴリズムを提案する。
具体的には、モデルトレーニング過程を2段階に分ける。
最初の段階では、すべての分野にわたるドメイン分類タスクの比率を制御する共有ハイパーパラメータが決定される。
第2段階では、入力テキストに含まれるドメイン情報を調整するための新しいドメイン認識変調アルゴリズムを導入し、勾配法および損失法に基づいて計算する。
要約すると、16のドメインを含む公的な感情分析データセットの実験結果は、提案手法の優位性を証明している。
関連論文リスト
- DAOT: Domain-Agnostically Aligned Optimal Transport for Domain-Adaptive
Crowd Counting [35.83485358725357]
ドメイン適応は一般的に、異なるデータセット間のドメインギャップをブリッジするために、群衆カウントに使用される。
既存のドメイン適応手法は、同じデータセット内の差を見下ろしながら、データセット間の違いに焦点を当てる傾向がある。
ドメインに依存しない要素をドメイン間で整合させるDAOT(Domain-Agnostically Aligned Optimal Transport)戦略を提案する。
論文 参考訳(メタデータ) (2023-08-10T02:59:40Z) - Domain Generalization via Selective Consistency Regularization for Time
Series Classification [16.338176636365752]
ドメイン一般化手法は、限られた数のソースドメインからのデータで、ドメインシフトに頑健なモデルを学習することを目的としている。
本稿では,ソースドメイン間の予測一貫性を選択的に適用する表現学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-16T01:57:35Z) - Multi-Level Features Contrastive Networks for Unsupervised Domain
Adaptation [6.934905764152813]
教師なしのドメイン適応は、ラベル付きソースドメインからモデルをトレーニングし、ラベルなしのターゲットドメインで予測することを目的としています。
既存のメソッドは2つのドメインをドメインレベルに直接アライメントするか、あるいは深い機能に基づいてクラスレベルのドメインアライメントを実行する傾向があります。
本稿では,クラスレベルのアライメント手法について述べる。
論文 参考訳(メタデータ) (2021-09-14T09:23:27Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
深層畳み込みニューラルネットワーク(CNN)内のソースドメインとターゲットドメインにセマンティックセグメンテーションネットワークを適用する既存の技術は、対象ドメイン自身や推定カテゴリ内のクラス間変異を考慮していない。
学習可能なクラスタリングモジュールと、クロスドメイングルーピングとアライメントと呼ばれる新しいドメイン適応フレームワークを導入する。
本手法はセマンティクスセグメンテーションにおける適応性能を一貫して向上させ,様々なドメイン適応設定において最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-15T11:36:21Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z) - Domain2Vec: Domain Embedding for Unsupervised Domain Adaptation [56.94873619509414]
従来の教師なしドメイン適応は、限られた数のドメイン間の知識伝達を研究する。
本稿では,特徴不整合とグラム行列の連成学習に基づいて,視覚領域のベクトル表現を提供する新しいDomain2Vecモデルを提案する。
我々の埋め込みは、異なるドメイン間の視覚的関係に関する直感と一致するドメイン類似性を予測できることを示した。
論文 参考訳(メタデータ) (2020-07-17T22:05:09Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
本稿では,ドメイン適応のための新しいセマンティクスを提案する。このセマンティクスでは,ソースドメインと比較して,対象ドメインのアノテーション付きデータがはるかに少ない。
我々のセマンティックな利点は、2段階の粗大なフレームワークから得ており、2段階の異なる正確な処理を提供できる。
ベンチマークデータセットの実験により、我々の手法はいくつかの一般的なドメイン適応戦略より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-06-23T14:47:41Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
カテゴリレベルのドメインアライメントを求めるグラフ誘発プロトタイプアライメント(GPA)フレームワークを提案する。
さらに,クラス不均衡がドメイン適応に与える影響を軽減するために,クラス重み付きコントラスト損失を設計する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-03-28T17:46:55Z) - Differential Treatment for Stuff and Things: A Simple Unsupervised
Domain Adaptation Method for Semantic Segmentation [105.96860932833759]
最先端のアプローチは、セマンティックレベルのアライメントの実行がドメインシフトの問題に取り組むのに役立つことを証明している。
我々は,物事領域や物事に対する異なる戦略による意味レベルのアライメントを改善することを提案する。
提案手法に加えて,提案手法は,ソースとターゲットドメイン間の最も類似した機能やインスタンス機能を最小化することにより,この問題の緩和に有効であることを示す。
論文 参考訳(メタデータ) (2020-03-18T04:43:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。