Jailbreaking the Text-to-Video Generative Models
- URL: http://arxiv.org/abs/2505.06679v1
- Date: Sat, 10 May 2025 16:04:52 GMT
- Title: Jailbreaking the Text-to-Video Generative Models
- Authors: Jiayang Liu, Siyuan Liang, Shiqian Zhao, Rongcheng Tu, Wenbo Zhou, Xiaochun Cao, Dacheng Tao, Siew Kei Lam,
- Abstract summary: We propose the textitfirst optimization-based jailbreak attack against text-to-video models, which is specifically designed.<n>Our approach formulates the prompt generation task as an optimization problem with three key objectives.<n>We conduct extensive experiments across multiple text-to-video models, including Open-Sora, Pika, Luma, and Kling.
- Score: 95.43898677860565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-video generative models have achieved significant progress, driven by the rapid advancements in diffusion models, with notable examples including Pika, Luma, Kling, and Sora. Despite their remarkable generation ability, their vulnerability to jailbreak attack, i.e. to generate unsafe content, including pornography, violence, and discrimination, raises serious safety concerns. Existing efforts, such as T2VSafetyBench, have provided valuable benchmarks for evaluating the safety of text-to-video models against unsafe prompts but lack systematic studies for exploiting their vulnerabilities effectively. In this paper, we propose the \textit{first} optimization-based jailbreak attack against text-to-video models, which is specifically designed. Our approach formulates the prompt generation task as an optimization problem with three key objectives: (1) maximizing the semantic similarity between the input and generated prompts, (2) ensuring that the generated prompts can evade the safety filter of the text-to-video model, and (3) maximizing the semantic similarity between the generated videos and the original input prompts. To further enhance the robustness of the generated prompts, we introduce a prompt mutation strategy that creates multiple prompt variants in each iteration, selecting the most effective one based on the averaged score. This strategy not only improves the attack success rate but also boosts the semantic relevance of the generated video. We conduct extensive experiments across multiple text-to-video models, including Open-Sora, Pika, Luma, and Kling. The results demonstrate that our method not only achieves a higher attack success rate compared to baseline methods but also generates videos with greater semantic similarity to the original input prompts.
Related papers
- Advancing Jailbreak Strategies: A Hybrid Approach to Exploiting LLM Vulnerabilities and Bypassing Modern Defenses [4.706534644850809]
Two primary inference-phase threats are token-level and prompt-level jailbreaks.<n>We propose two hybrid approaches that integrate token- and prompt-level techniques to enhance jailbreak effectiveness across diverse PTLMs.
arXiv Detail & Related papers (2025-06-27T07:26:33Z) - From Evaluation to Defense: Advancing Safety in Video Large Language Models [33.10355085086974]
We introduce textbfVideoSafetyBench (VSB-77k) - the first large-scale, culturally diverse benchmark for Video LLM safety.<n> integrating video modality degrades safety performance by an average of 42.3%, exposing systemic risks in multimodal attack exploitation.<n>We propose textbfVideoSafety-R1, a dual-stage framework achieving unprecedented safety gains through two innovations.
arXiv Detail & Related papers (2025-05-22T13:16:53Z) - Video-SafetyBench: A Benchmark for Safety Evaluation of Video LVLMs [51.90597846977058]
Video-SafetyBench is the first benchmark designed to evaluate the safety of LVLMs under video-text attacks.<n>It comprises 2,264 video-text pairs spanning 48 fine-grained unsafe categories.<n>To generate semantically accurate videos for safety evaluation, we design a controllable pipeline that decomposes video semantics into subject images and motion text.
arXiv Detail & Related papers (2025-05-17T05:06:38Z) - T2VShield: Model-Agnostic Jailbreak Defense for Text-to-Video Models [88.63040835652902]
Text to video models are vulnerable to jailbreak attacks, where specially crafted prompts bypass safety mechanisms and lead to the generation of harmful or unsafe content.<n>We propose T2VShield, a comprehensive and model agnostic defense framework designed to protect text to video models from jailbreak threats.<n>Our method systematically analyzes the input, model, and output stages to identify the limitations of existing defenses.
arXiv Detail & Related papers (2025-04-22T01:18:42Z) - Improving LLM Safety Alignment with Dual-Objective Optimization [65.41451412400609]
Existing training-time safety alignment techniques for large language models (LLMs) remain vulnerable to jailbreak attacks.<n>We propose an improved safety alignment that disentangles DPO objectives into two components: (1) robust refusal training, which encourages refusal even when partial unsafe generations are produced, and (2) targeted unlearning of harmful knowledge.
arXiv Detail & Related papers (2025-03-05T18:01:05Z) - How Jailbreak Defenses Work and Ensemble? A Mechanistic Investigation [39.44000290664494]
Jailbreak attacks, where harmful prompts bypass generative models' built-in safety, raise serious concerns about model vulnerability.<n>This paper systematically examines jailbreak defenses by reframing the standard generation task as a binary classification problem.<n>We identify two key defense mechanisms: safety shift, which increases refusal rates across all queries, and harmfulness discrimination, which improves the model's ability to distinguish between harmful and benign inputs.
arXiv Detail & Related papers (2025-02-20T12:07:40Z) - HTS-Attack: Heuristic Token Search for Jailbreaking Text-to-Image Models [28.28898114141277]
Text-to-Image(T2I) models have achieved remarkable success in image generation and editing.<n>These models still have many potential issues, particularly in generating inappropriate or Not-Safe-For-Work(NSFW) content.<n>We propose HTS-Attack, a token search attack method.
arXiv Detail & Related papers (2024-08-25T17:33:40Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
This work investigates the vulnerabilities of security-enhancing diffusion models.
We demonstrate that these models are highly susceptible to DIFF2, a simple yet effective backdoor attack.
Case studies show that DIFF2 can significantly reduce both post-purification and certified accuracy across benchmark datasets and models.
arXiv Detail & Related papers (2024-06-14T02:39:43Z) - Jailbreak Vision Language Models via Bi-Modal Adversarial Prompt [60.54666043358946]
This paper introduces the Bi-Modal Adversarial Prompt Attack (BAP), which executes jailbreaks by optimizing textual and visual prompts cohesively.
In particular, we utilize a large language model to analyze jailbreak failures and employ chain-of-thought reasoning to refine textual prompts.
arXiv Detail & Related papers (2024-06-06T13:00:42Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
We propose a more comprehensive strategy that jointly attacks both text and image modalities to exploit a broader spectrum of vulnerability within Large Vision-Language Models.
Our attack method begins by optimizing an adversarial image prefix from random noise to generate diverse harmful responses in the absence of text input.
An adversarial text suffix is integrated and co-optimized with the adversarial image prefix to maximize the probability of eliciting affirmative responses to various harmful instructions.
arXiv Detail & Related papers (2024-05-28T07:13:30Z) - Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? [52.238883592674696]
Ring-A-Bell is a model-agnostic red-teaming tool for T2I diffusion models.
It identifies problematic prompts for diffusion models with the corresponding generation of inappropriate content.
Our results show that Ring-A-Bell, by manipulating safe prompting benchmarks, can transform prompts that were originally regarded as safe to evade existing safety mechanisms.
arXiv Detail & Related papers (2023-10-16T02:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.