From Evaluation to Defense: Advancing Safety in Video Large Language Models
- URL: http://arxiv.org/abs/2505.16643v1
- Date: Thu, 22 May 2025 13:16:53 GMT
- Title: From Evaluation to Defense: Advancing Safety in Video Large Language Models
- Authors: Yiwei Sun, Peiqi Jiang, Chuanbin Liu, Luohao Lin, Zhiying Lu, Hongtao Xie,
- Abstract summary: We introduce textbfVideoSafetyBench (VSB-77k) - the first large-scale, culturally diverse benchmark for Video LLM safety.<n> integrating video modality degrades safety performance by an average of 42.3%, exposing systemic risks in multimodal attack exploitation.<n>We propose textbfVideoSafety-R1, a dual-stage framework achieving unprecedented safety gains through two innovations.
- Score: 33.10355085086974
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While the safety risks of image-based large language models have been extensively studied, their video-based counterparts (Video LLMs) remain critically under-examined. To systematically study this problem, we introduce \textbf{VideoSafetyBench (VSB-77k) - the first large-scale, culturally diverse benchmark for Video LLM safety}, which compromises 77,646 video-query pairs and spans 19 principal risk categories across 10 language communities. \textit{We reveal that integrating video modality degrades safety performance by an average of 42.3\%, exposing systemic risks in multimodal attack exploitation.} To address this vulnerability, we propose \textbf{VideoSafety-R1}, a dual-stage framework achieving unprecedented safety gains through two innovations: (1) Alarm Token-Guided Safety Fine-Tuning (AT-SFT) injects learnable alarm tokens into visual and textual sequences, enabling explicit harm perception across modalities via multitask objectives. (2) Then, Safety-Guided GRPO enhances defensive reasoning through dynamic policy optimization with rule-based rewards derived from dual-modality verification. These components synergize to shift safety alignment from passive harm recognition to active reasoning. The resulting framework achieves a 65.1\% improvement on VSB-Eval-HH, and improves by 59.1\%, 44.3\%, and 15.0\% on the image safety datasets MMBench, VLGuard, and FigStep, respectively. \textit{Our codes are available in the supplementary materials.} \textcolor{red}{Warning: This paper contains examples of harmful language and videos, and reader discretion is recommended.}
Related papers
- HoliSafe: Holistic Safety Benchmarking and Modeling with Safety Meta Token for Vision-Language Model [52.72318433518926]
Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content.<n>We introduce a holistic safety dataset and benchmark, HoliSafe, that spans all five safe/unsafe image-text combinations.<n>We propose SafeLLaVA, a novel VLM augmented with a learnable safety meta token and a dedicated safety head.
arXiv Detail & Related papers (2025-06-05T07:26:34Z) - SafeKey: Amplifying Aha-Moment Insights for Safety Reasoning [76.56522719330911]
Large Reasoning Models (LRMs) introduce a new generation paradigm of explicitly reasoning before answering.<n>LRMs pose great safety risks against harmful queries and adversarial attacks.<n>We propose SafeKey to better activate the safety aha moment in the key sentence.
arXiv Detail & Related papers (2025-05-22T03:46:03Z) - SafeVid: Toward Safety Aligned Video Large Multimodal Models [60.14535756294228]
We introduce SafeVid, a framework designed to instill video-specific safety principles in Video Large Multimodal Models (VLMMs)<n>SafeVid employs detailed textual video descriptions as an interpretive bridge, facilitating rule-driven safety reasoning.<n> Alignment with SafeVid-350K significantly enhances VLMM safety, with models like LLaVA-NeXT-Video demonstrating substantial improvements.
arXiv Detail & Related papers (2025-05-17T09:21:33Z) - Video-SafetyBench: A Benchmark for Safety Evaluation of Video LVLMs [51.90597846977058]
Video-SafetyBench is the first benchmark designed to evaluate the safety of LVLMs under video-text attacks.<n>It comprises 2,264 video-text pairs spanning 48 fine-grained unsafe categories.<n>To generate semantically accurate videos for safety evaluation, we design a controllable pipeline that decomposes video semantics into subject images and motion text.
arXiv Detail & Related papers (2025-05-17T05:06:38Z) - T2V-OptJail: Discrete Prompt Optimization for Text-to-Video Jailbreak Attacks [67.91652526657599]
We formalize the T2V jailbreak attack as a discrete optimization problem and propose a joint objective-based optimization framework, called T2V-OptJail.<n>We conduct large-scale experiments on several T2V models, covering both open-source models and real commercial closed-source models.<n>The proposed method improves 11.4% and 10.0% over the existing state-of-the-art method in terms of attack success rate.
arXiv Detail & Related papers (2025-05-10T16:04:52Z) - T2VShield: Model-Agnostic Jailbreak Defense for Text-to-Video Models [88.63040835652902]
Text to video models are vulnerable to jailbreak attacks, where specially crafted prompts bypass safety mechanisms and lead to the generation of harmful or unsafe content.<n>We propose T2VShield, a comprehensive and model agnostic defense framework designed to protect text to video models from jailbreak threats.<n>Our method systematically analyzes the input, model, and output stages to identify the limitations of existing defenses.
arXiv Detail & Related papers (2025-04-22T01:18:42Z) - Can't See the Forest for the Trees: Benchmarking Multimodal Safety Awareness for Multimodal LLMs [56.440345471966666]
Multimodal Large Language Models (MLLMs) have expanded the capabilities of traditional language models by enabling interaction through both text and images.<n>This paper introduces MMSafeAware, the first comprehensive multimodal safety awareness benchmark designed to evaluate MLLMs across 29 safety scenarios.<n> MMSafeAware includes both unsafe and over-safety subsets to assess models abilities to correctly identify unsafe content and avoid over-sensitivity that can hinder helpfulness.
arXiv Detail & Related papers (2025-02-16T16:12:40Z) - Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models [25.606641582511106]
We propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance.<n>Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks.
arXiv Detail & Related papers (2025-01-30T17:59:45Z) - SafeWatch: An Efficient Safety-Policy Following Video Guardrail Model with Transparent Explanations [10.451619858527897]
We propose SafeWatch, an efficient MLLM-based video guardrail model to follow customized safety policies.<n>Unlike traditional MLLM-based guardrails that encode all safety policies autoregressively, SafeWatch uniquely encodes each policy chunk in parallel.<n>In addition, SafeWatch incorporates a policy-aware visual token pruning algorithm that adaptively selects the most relevant video tokens for each policy.
arXiv Detail & Related papers (2024-12-09T18:59:04Z) - Safety Alignment for Vision Language Models [21.441662865727448]
We enhance the visual modality safety alignment of Vision Language Models (VLMs) by adding safety modules.
Our method boasts ease of use, high flexibility, and strong controllability, and it enhances safety while having minimal impact on the model's general performance.
arXiv Detail & Related papers (2024-05-22T12:21:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.