UnfoldIR: Rethinking Deep Unfolding Network in Illumination Degradation Image Restoration
- URL: http://arxiv.org/abs/2505.06683v1
- Date: Sat, 10 May 2025 16:13:01 GMT
- Title: UnfoldIR: Rethinking Deep Unfolding Network in Illumination Degradation Image Restoration
- Authors: Chunming He, Rihan Zhang, Fengyang Xiao, Chengyu Fang, Longxiang Tang, Yulun Zhang, Sina Farsiu,
- Abstract summary: Deep unfolding networks (DUNs) are widely employed in illumination degradation image restoration (IDIR)<n>We propose a novel DUN-based method, UnfoldIR, for IDIR tasks.<n>We unfold the iterative optimized solution of this model into a multistage network, with each stage comprising a reflectance-assisted illumination correction (RAIC) module and an illumination-guided reflectance enhancement (IGRE) module.
- Score: 33.290565892897824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep unfolding networks (DUNs) are widely employed in illumination degradation image restoration (IDIR) to merge the interpretability of model-based approaches with the generalization of learning-based methods. However, the performance of DUN-based methods remains considerably inferior to that of state-of-the-art IDIR solvers. Our investigation indicates that this limitation does not stem from structural shortcomings of DUNs but rather from the limited exploration of the unfolding structure, particularly for (1) constructing task-specific restoration models, (2) integrating advanced network architectures, and (3) designing DUN-specific loss functions. To address these issues, we propose a novel DUN-based method, UnfoldIR, for IDIR tasks. UnfoldIR first introduces a new IDIR model with dedicated regularization terms for smoothing illumination and enhancing texture. We unfold the iterative optimized solution of this model into a multistage network, with each stage comprising a reflectance-assisted illumination correction (RAIC) module and an illumination-guided reflectance enhancement (IGRE) module. RAIC employs a visual state space (VSS) to extract non-local features, enforcing illumination smoothness, while IGRE introduces a frequency-aware VSS to globally align similar textures, enabling mildly degraded regions to guide the enhancement of details in more severely degraded areas. This suppresses noise while enhancing details. Furthermore, given the multistage structure, we propose an inter-stage information consistent loss to maintain network stability in the final stages. This loss contributes to structural preservation and sustains the model's performance even in unsupervised settings. Experiments verify our effectiveness across 5 IDIR tasks and 3 downstream problems.
Related papers
- Unsupervised Image Super-Resolution Reconstruction Based on Real-World Degradation Patterns [4.977925450373957]
We propose a novel TripleGAN framework for training super-resolution reconstruction models.<n>The framework learns real-world degradation patterns from LR observations and synthesizes datasets with corresponding degradation characteristics.<n>Our method exhibits clear advantages in quantitative metrics while maintaining sharp reconstructions without over-smoothing artifacts.
arXiv Detail & Related papers (2025-06-20T14:24:48Z) - Vision-Language Gradient Descent-driven All-in-One Deep Unfolding Networks [14.180694577459425]
Vision-Language-guided Unfolding Network (VLU-Net) is a unified DUN framework for handling multiple degradation types simultaneously.<n>VLU-Net is the first all-in-one DUN framework and outperforms current leading one-by-one and all-in-one end-to-end methods by 3.74 dB on the SOTS dehazing dataset and 1.70 dB on the Rain100L deraining dataset.
arXiv Detail & Related papers (2025-03-21T08:02:48Z) - A Lightweight Deep Exclusion Unfolding Network for Single Image Reflection Removal [68.0573194557999]
Single Image Reflection Removal (SIRR) is a canonical blind source separation problem.<n>We propose a novel Deep Exclusion unfolding Network (DExNet) for SIRR.<n>DExNet is constructed by unfolding and parameterizing a simple iterative Sparse and Auxiliary Feature Update (i-SAFU) algorithm.
arXiv Detail & Related papers (2025-03-03T07:54:27Z) - LoRA-IR: Taming Low-Rank Experts for Efficient All-in-One Image Restoration [62.3751291442432]
We propose LoRA-IR, a flexible framework that dynamically leverages compact low-rank experts to facilitate efficient all-in-one image restoration.
LoRA-IR consists of two training stages: degradation-guided pre-training and parameter-efficient fine-tuning.
Experiments demonstrate that LoRA-IR achieves SOTA performance across 14 IR tasks and 29 benchmarks, while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-20T13:00:24Z) - Low-Light Video Enhancement via Spatial-Temporal Consistent Illumination and Reflection Decomposition [68.6707284662443]
Low-Light Video Enhancement (LLVE) seeks to restore dynamic and static scenes plagued by severe invisibility and noise.
One critical aspect is formulating a consistency constraint specifically for temporal-spatial illumination and appearance enhanced versions.
We present an innovative video Retinex-based decomposition strategy that operates without the need for explicit supervision.
arXiv Detail & Related papers (2024-05-24T15:56:40Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
Illumination degradation image restoration (IDIR) techniques aim to improve the visibility of degraded images and mitigate the adverse effects of deteriorated illumination.
Among these algorithms, diffusion model (DM)-based methods have shown promising performance but are often burdened by heavy computational demands and pixel misalignment issues when predicting the image-level distribution.
We propose to leverage DM within a compact latent space to generate concise guidance priors and introduce a novel solution called Reti-Diff for the IDIR task.
Reti-Diff comprises two key components: the Retinex-based latent DM (RLDM) and the Retinex-guided transformer (RG
arXiv Detail & Related papers (2023-11-20T09:55:06Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
This paper presents the deep compensation network unfolding (DCUNet) for restoring light field (LF) images captured under low-light conditions.
The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result.
To properly leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module.
arXiv Detail & Related papers (2023-08-10T07:53:06Z) - Learning Deep Context-Sensitive Decomposition for Low-Light Image
Enhancement [58.72667941107544]
A typical framework is to simultaneously estimate the illumination and reflectance, but they disregard the scene-level contextual information encapsulated in feature spaces.
We develop a new context-sensitive decomposition network architecture to exploit the scene-level contextual dependencies on spatial scales.
We develop a lightweight CSDNet (named LiteCSDNet) by reducing the number of channels.
arXiv Detail & Related papers (2021-12-09T06:25:30Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
We present and advocate an explainable approach toward SISR named model-guided deep unfolding network (MoG-DUN)
MoG-DUN is accurate (producing fewer aliasing artifacts), computationally efficient (with reduced model parameters), and versatile (capable of handling multiple degradations)
The superiority of the proposed MoG-DUN method to existing state-of-theart image methods including RCAN, SRDNF, and SRFBN is substantiated by extensive experiments on several popular datasets and various degradation scenarios.
arXiv Detail & Related papers (2020-09-14T08:23:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.