論文の概要: Gated Attention for Large Language Models: Non-linearity, Sparsity, and Attention-Sink-Free
- arxiv url: http://arxiv.org/abs/2505.06708v1
- Date: Sat, 10 May 2025 17:15:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:49.003247
- Title: Gated Attention for Large Language Models: Non-linearity, Sparsity, and Attention-Sink-Free
- Title(参考訳): 大規模言語モデルに対するGated Attention:非線型性, 疎性, 注意-シンクフリー
- Authors: Zihan Qiu, Zekun Wang, Bo Zheng, Zeyu Huang, Kaiyue Wen, Songlin Yang, Rui Men, Le Yu, Fei Huang, Suozhi Huang, Dayiheng Liu, Jingren Zhou, Junyang Lin,
- Abstract要約: 我々は、ゲーティング強化ソフトマックスアテンションの変種を調べる実験を行った。
SDPA(Scaled Dot-Product Attention)後の頭部特異的シグモイドゲートを簡易に修正することで,性能が向上することがわかった。
- 参考スコア(独自算出の注目度): 81.65559031466452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gating mechanisms have been widely utilized, from early models like LSTMs and Highway Networks to recent state space models, linear attention, and also softmax attention. Yet, existing literature rarely examines the specific effects of gating. In this work, we conduct comprehensive experiments to systematically investigate gating-augmented softmax attention variants. Specifically, we perform a comprehensive comparison over 30 variants of 15B Mixture-of-Experts (MoE) models and 1.7B dense models trained on a 3.5 trillion token dataset. Our central finding is that a simple modification-applying a head-specific sigmoid gate after the Scaled Dot-Product Attention (SDPA)-consistently improves performance. This modification also enhances training stability, tolerates larger learning rates, and improves scaling properties. By comparing various gating positions and computational variants, we attribute this effectiveness to two key factors: (1) introducing non-linearity upon the low-rank mapping in the softmax attention, and (2) applying query-dependent sparse gating scores to modulate the SDPA output. Notably, we find this sparse gating mechanism mitigates 'attention sink' and enhances long-context extrapolation performance, and we also release related $\href{https://github.com/qiuzh20/gated_attention}{codes}$ and $\href{https://huggingface.co/QwQZh/gated_attention}{models}$ to facilitate future research.
- Abstract(参考訳): ゲーティング機構はLSTMやハイウェイネットワークといった初期のモデルから最近の状態空間モデル、線形アテンション、ソフトマックスアテンションまで広く利用されてきた。
しかし、既存の文献ではゲーティングの具体的な効果についてはほとんど調査されていない。
本研究では、ゲーティング強化ソフトマックスアテンション変異を系統的に研究するための総合的な実験を行う。
具体的には、15B Mixture-of-Experts(MoE)モデルと3.5兆トークンデータセットでトレーニングされた1.7B高密度モデルに対して、30種類以上の包括的な比較を行う。
我々の中心的な発見は、SDPA(Scaled Dot-Product Attention)後の頭部特異的シグモイドゲートを簡単な修正で適用することで、パフォーマンスが継続的に向上することである。
この修正により、トレーニングの安定性が向上し、学習速度が向上し、スケーリング特性が向上する。
各種ゲーティング位置と計算変種を比較して,(1)低ランクマッピングに非直線性を導入すること,(2)クエリ依存のスパースゲーティングスコアを適用してSDPA出力を変調すること,の2つの要因を考察した。
そして、関連する $\href{https://github.com/qiuzh20/gated_attention}{codes}$ と $\href{https://huggingface.co/QwQZh/gated_attention}{models}$ もリリースし、将来の研究を促進する。
関連論文リスト
- S*: Test Time Scaling for Code Generation [55.11863577956177]
コード生成のための最初のハイブリッドテストタイムスケーリングフレームワークであるS*を提案する。
S*は生成されたコードのカバレッジと選択精度を大幅に改善する。
論文 参考訳(メタデータ) (2025-02-20T09:18:53Z) - FuXi-$α$: Scaling Recommendation Model with Feature Interaction Enhanced Transformer [81.12174905444229]
近年の進歩は、大規模レコメンデーションモデルに逐次レコメンデーションモデルを拡張することが効果的な戦略であることを示している。
これらの問題に対処するために、FuXi-$alpha$と呼ばれる新しいモデルを提案する。
我々のモデルは既存のモデルよりも優れており、モデルのサイズが大きくなるにつれてその性能は継続的に向上する。
論文 参考訳(メタデータ) (2025-02-05T09:46:54Z) - Towards Scalable and Deep Graph Neural Networks via Noise Masking [59.058558158296265]
グラフニューラルネットワーク(GNN)は多くのグラフマイニングタスクで顕著に成功している。
計算とストレージのコストが高いため、大きなグラフにスケールすることは困難です。
既存のモデル単純化作業と互換性のあるプラグアンドプレイモジュールであるノイズマスキング(RMask)を用いたランダムウォークを提案する。
論文 参考訳(メタデータ) (2024-12-19T07:48:14Z) - DiTMoS: Delving into Diverse Tiny-Model Selection on Microcontrollers [34.282971510732736]
我々は、セレクタ分類器アーキテクチャを備えた新しいDNNトレーニングおよび推論フレームワークであるDiTMoSを紹介する。
弱いモデルの合成は高い多様性を示すことができ、それらの結合は精度の上限を大幅に高めることができる。
我々は,Nucleo STM32F767ZIボード上にDiTMoSをデプロイし,人間の活動認識,キーワードスポッティング,感情認識のための時系列データセットに基づいて評価する。
論文 参考訳(メタデータ) (2024-03-14T02:11:38Z) - Simple linear attention language models balance the recall-throughput tradeoff [60.06020449520365]
線形およびすべり窓の注意を結合したシンプルなアーキテクチャであるBASEDを提案する。
我々は、最大1.3bパラメータの言語モデルをトレーニングし、BASEDがパープレキシティにおいて最強のサブクワッドラティックモデルと一致し、実世界のリコール集約タスクにおいて6.22の精度ポイントでそれらのモデルを上回っていることを示す。
論文 参考訳(メタデータ) (2024-02-28T19:28:27Z) - TransNormerLLM: A Faster and Better Large Language Model with Improved
TransNormer [34.790081960470964]
最初の線形注意に基づくLarge Language Model(LLM)であるTransNormerLLMを提案する。
我々は, 位置埋め込み, 線形注意加速度, ゲーティング機構, テンソル正規化, 推論加速度, 安定化など, 高度な修正を行う。
自己収集コーパス上に385M, 1B, 7Bの大きさの列車モデルとアブリケーションを用いてモデル設計を検証する。
論文 参考訳(メタデータ) (2023-07-27T16:45:33Z) - Sparse Attention with Linear Units [60.399814410157425]
本稿では, ソフトマックスアクティベーションをReLUに置き換えることにより, 注目度を向上する新しい, 簡便な手法を提案する。
我々のモデルはRectified Linear Attention (ReLA)と呼ばれ、以前提案したスパースアテンション機構よりも実装が容易で効率的である。
分析の結果,RELAは高い空間性率と頭部の多様性を達成でき,ソース・ターゲット単語アライメントの精度が向上することがわかった。
論文 参考訳(メタデータ) (2021-04-14T17:52:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。