Privacy-aware Berrut Approximated Coded Computing applied to general distributed learning
- URL: http://arxiv.org/abs/2505.06759v1
- Date: Sat, 10 May 2025 21:27:40 GMT
- Title: Privacy-aware Berrut Approximated Coded Computing applied to general distributed learning
- Authors: Xavier Martínez-Luaña, Manuel Fernández-Veiga, Rebeca P. Díaz-Redondo, Ana Fernández-Vilas,
- Abstract summary: This paper considers the use of Private Berrut Approximate Coded Computing (PBACC) as a general solution to add strong but non-perfect privacy to federated learning.<n>We derive new adapted PBACC algorithms for centralized aggregation, secure distributed training with centralized data, and secure decentralized training with decentralized data.
- Score: 2.8123958518740544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coded computing is one of the techniques that can be used for privacy protection in Federated Learning. However, most of the constructions used for coded computing work only under the assumption that the computations involved are exact, generally restricted to special classes of functions, and require quantized inputs. This paper considers the use of Private Berrut Approximate Coded Computing (PBACC) as a general solution to add strong but non-perfect privacy to federated learning. We derive new adapted PBACC algorithms for centralized aggregation, secure distributed training with centralized data, and secure decentralized training with decentralized data, thus enlarging significantly the applications of the method and the existing privacy protection tools available for these paradigms. Particularly, PBACC can be used robustly to attain privacy guarantees in decentralized federated learning for a variety of models. Our numerical results show that the achievable quality of different learning models (convolutional neural networks, variational autoencoders, and Cox regression) is minimally altered by using these new computing schemes, and that the privacy leakage can be bounded strictly to less than a fraction of one bit per participant. Additionally, the computational cost of the encoding and decoding processes depends only of the degree of decentralization of the data.
Related papers
- Information-Theoretic Decentralized Secure Aggregation with Collusion Resilience [98.31540557973179]
We study the problem of decentralized secure aggregation (DSA) from an information-theoretic perspective.<n>We characterize the optimal rate region, which specifies the minimum achievable communication and secret key rates for DSA.<n>Our results establish the fundamental performance limits of DSA, providing insights for the design of provably secure and communication-efficient protocols.
arXiv Detail & Related papers (2025-08-01T12:51:37Z) - Private Training & Data Generation by Clustering Embeddings [74.00687214400021]
Differential privacy (DP) provides a robust framework for protecting individual data.<n>We introduce a novel principled method for DP synthetic image embedding generation.<n> Empirically, a simple two-layer neural network trained on synthetically generated embeddings achieves state-of-the-art (SOTA) classification accuracy.
arXiv Detail & Related papers (2025-06-20T00:17:14Z) - Secure Distributed Learning for CAVs: Defending Against Gradient Leakage with Leveled Homomorphic Encryption [0.0]
Homomorphic Encryption (HE) offers a promising alternative to Differential Privacy (DP) and Secure Multi-Party Computation (SMPC)<n>We evaluate various HE schemes to identify the most suitable for Federated Learning (FL) in resource-constrained environments.<n>We develop a full HE-based FL pipeline that effectively mitigates Deep Leakage from Gradients (DLG) attacks while preserving model accuracy.
arXiv Detail & Related papers (2025-06-09T16:12:18Z) - Federated Learning with Quantum Computing and Fully Homomorphic Encryption: A Novel Computing Paradigm Shift in Privacy-Preserving ML [4.92218040320554]
Federated Learning is a privacy-preserving alternative to conventional methods that allow multiple learning clients to share model knowledge without disclosing private data.
This work applies the Fully Homomorphic Encryption scheme to a Federated Learning Neural Network architecture that integrates both classical and quantum layers.
arXiv Detail & Related papers (2024-09-14T01:23:26Z) - Privacy-aware Berrut Approximated Coded Computing for Federated Learning [1.2084539012992408]
We propose a solution to guarantee privacy in Federated Learning schemes.
Our proposal is based on the Berrut Approximated Coded Computing, adapted to a Secret Sharing configuration.
arXiv Detail & Related papers (2024-05-02T20:03:13Z) - Sparse Decentralized Federated Learning [35.32297764027417]
Decentralized Federated Learning (DFL) enables collaborative model training without a central server but faces challenges in efficiency, stability, and trustworthiness.<n>We introduce a sparsity constraint on the shared model, leading to Sparse DFL (SDFL), and propose a novel algorithm, CEPS.<n> Numerical experiments validate the effectiveness of the proposed algorithm in improving communication and efficiency while maintaining a high level of trustworthiness.
arXiv Detail & Related papers (2023-08-31T12:22:40Z) - PEOPL: Characterizing Privately Encoded Open Datasets with Public Labels [59.66777287810985]
We introduce information-theoretic scores for privacy and utility, which quantify the average performance of an unfaithful user.
We then theoretically characterize primitives in building families of encoding schemes that motivate the use of random deep neural networks.
arXiv Detail & Related papers (2023-03-31T18:03:53Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Efficient Differentially Private Secure Aggregation for Federated
Learning via Hardness of Learning with Errors [1.4680035572775534]
Federated machine learning leverages edge computing to develop models from network user data.
Privacy in federated learning remains a major challenge.
Recent advances in emphsecure aggregation using multiparty computation eliminate the need for a third party.
We present a new federated learning protocol that leverages a novel differentially private, malicious secure aggregation protocol.
arXiv Detail & Related papers (2021-12-13T18:31:08Z) - Weight Divergence Driven Divide-and-Conquer Approach for Optimal
Federated Learning from non-IID Data [0.0]
Federated Learning allows training of data stored in distributed devices without the need for centralizing training data.
We propose a novel Divide-and-Conquer training methodology that enables the use of the popular FedAvg aggregation algorithm.
arXiv Detail & Related papers (2021-06-28T09:34:20Z) - A Graph Federated Architecture with Privacy Preserving Learning [48.24121036612076]
Federated learning involves a central processor that works with multiple agents to find a global model.
The current architecture of a server connected to multiple clients is highly sensitive to communication failures and computational overloads at the server.
We use cryptographic and differential privacy concepts to privatize the federated learning algorithm that we extend to the graph structure.
arXiv Detail & Related papers (2021-04-26T09:51:24Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
Federated learning (FL) is capable of preserving private data from mobile terminals (MTs) while training the data into useful models.
From a viewpoint of information theory, it is still possible for a curious server to infer private information from the shared models uploaded by MTs.
We propose a user-level differential privacy (UDP) algorithm by adding artificial noise to the shared models before uploading them to servers.
arXiv Detail & Related papers (2020-02-29T10:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.