Autoregressive pairwise Graphical Models efficiently find ground state representations of stoquastic Hamiltonians
- URL: http://arxiv.org/abs/2505.06798v1
- Date: Sun, 11 May 2025 00:36:48 GMT
- Title: Autoregressive pairwise Graphical Models efficiently find ground state representations of stoquastic Hamiltonians
- Authors: Yuchen Pang, Abhijith Jayakumar, Evan McKinney, Carleton Coffrin, Marc Vuffray, Andrey Y. Lokhov,
- Abstract summary: We introduce Autoregressive Graphical Models (AGMs) as an Ansatz for modeling the ground states of stoquastic Hamiltonians.<n>We find that simple AGMs with pairwise energy functions trained using first-order gradient methods often outperform more complex non-linear models trained using the more expensive reconfiguration method.
- Score: 6.10240618821149
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Autoregressive Graphical Models (AGMs) as an Ansatz for modeling the ground states of stoquastic Hamiltonians. Exact learning of these models for smaller systems show the dominance of the pairwise terms in the autoregressive decomposition, which informs our modeling choices when the Ansatz is used to find representations for ground states of larger systems. We find that simple AGMs with pairwise energy functions trained using first-order stochastic gradient methods often outperform more complex non-linear models trained using the more expensive stochastic reconfiguration method. We also test our models on Hamiltonians with frustration and observe that the simpler linear model used here shows faster convergence to the variational minimum in a resource-limited setting.
Related papers
- Nonlinear Model Order Reduction of Dynamical Systems in Process Engineering: Review and Comparison [50.0791489606211]
We review state-of-the-art nonlinear model order reduction methods.<n>We discuss both general-purpose methods and tailored approaches for (chemical) process systems.
arXiv Detail & Related papers (2025-06-15T11:39:12Z) - Principled model selection for stochastic dynamics [0.0]
PASTIS is a principled method combining likelihood-estimation statistics with extreme value theory to suppress superfluous parameters.<n>It reliably identifies minimal models, even with low sampling rates or measurement error.<n>It applies to partial differential equations, and applies to ecological networks and reaction-diffusion dynamics.
arXiv Detail & Related papers (2025-01-17T18:23:16Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.<n>We train the model using maximum likelihood estimation with Markov chain Monte Carlo.<n> Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - Wasserstein proximal operators describe score-based generative models
and resolve memorization [12.321631823103894]
We first formulate SGMs in terms of the Wasserstein proximal operator (WPO)
We show that WPO describes the inductive bias of diffusion and score-based models.
We present an interpretable kernel-based model for the score function which dramatically improves the performance of SGMs.
arXiv Detail & Related papers (2024-02-09T03:33:13Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
We propose a technique for extracting submodels from singular models.
Our method enforces model identifiability during training.
We show how the method can be applied to more complex models like deep neural networks.
arXiv Detail & Related papers (2022-06-17T07:50:22Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Scaling Hidden Markov Language Models [118.55908381553056]
This work revisits the challenge of scaling HMMs to language modeling datasets.
We propose methods for scaling HMMs to massive state spaces while maintaining efficient exact inference, a compact parameterization, and effective regularization.
arXiv Detail & Related papers (2020-11-09T18:51:55Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Prediction with Approximated Gaussian Process Dynamical Models [7.678864239473703]
We present approximated GPDMs which are Markov and analyze their control theoretical properties.
The outcomes are illustrated with numerical examples that show the power of the approximated models.
arXiv Detail & Related papers (2020-06-25T16:51:17Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.