Active Learning for Multi-class Image Classification
- URL: http://arxiv.org/abs/2505.06825v1
- Date: Sun, 11 May 2025 03:25:09 GMT
- Title: Active Learning for Multi-class Image Classification
- Authors: Thien Nhan Vo,
- Abstract summary: A principle bottleneck in image classification is the large number of training examples needed to train a classifier.<n>Using active learning, we can reduce the number of training examples to teach a CNN classifier by strategically selecting examples.<n>We show active learning is a viable algorithm for image classification problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A principle bottleneck in image classification is the large number of training examples needed to train a classifier. Using active learning, we can reduce the number of training examples to teach a CNN classifier by strategically selecting examples. Assigning values to image examples using different uncertainty metrics allows the model to identify and select high-value examples in a smaller training set size. We demonstrate results for digit recognition and fruit classification on the MNIST and Fruits360 data sets. We formally compare results for four different uncertainty metrics. Finally, we observe active learning is also effective on simpler (binary) classification tasks, but marked improvement from random sampling is more evident on more difficult tasks. We show active learning is a viable algorithm for image classification problems.
Related papers
- Active Learning via Classifier Impact and Greedy Selection for Interactive Image Retrieval [4.699825956909531]
Active Learning (AL) is a user-interactive approach aimed at reducing annotation costs by selecting the most crucial examples to label.<n>We introduce a novel batch-mode Active Learning framework named GAL (Greedy Active Learning) that better copes with this application.
arXiv Detail & Related papers (2024-12-03T09:27:46Z) - Investigating Self-Supervised Methods for Label-Efficient Learning [27.029542823306866]
We study different self supervised pretext tasks, namely contrastive learning, clustering, and masked image modelling for their low-shot capabilities.
We introduce a framework involving both mask image modelling and clustering as pretext tasks, which performs better across all low-shot downstream tasks.
When testing the model on full scale datasets, we show performance gains in multi-class classification, multi-label classification and semantic segmentation.
arXiv Detail & Related papers (2024-06-25T10:56:03Z) - Two-Step Active Learning for Instance Segmentation with Uncertainty and
Diversity Sampling [20.982992381790034]
We propose a post-hoc active learning algorithm that integrates uncertainty-based sampling with diversity-based sampling.
Our proposed algorithm is not only simple and easy to implement, but it also delivers superior performance on various datasets.
arXiv Detail & Related papers (2023-09-28T03:40:30Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
This paper investigates how Active Learning algorithms can serve as effective demonstration selection methods for in-context learning.
We show that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
arXiv Detail & Related papers (2023-05-23T17:16:04Z) - Self-similarity Driven Scale-invariant Learning for Weakly Supervised
Person Search [66.95134080902717]
We propose a novel one-step framework, named Self-similarity driven Scale-invariant Learning (SSL)
We introduce a Multi-scale Exemplar Branch to guide the network in concentrating on the foreground and learning scale-invariant features.
Experiments on PRW and CUHK-SYSU databases demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2023-02-25T04:48:11Z) - MoBYv2AL: Self-supervised Active Learning for Image Classification [57.4372176671293]
We present MoBYv2AL, a novel self-supervised active learning framework for image classification.
Our contribution lies in lifting MoBY, one of the most successful self-supervised learning algorithms, to the AL pipeline.
We achieve state-of-the-art results when compared to recent AL methods.
arXiv Detail & Related papers (2023-01-04T10:52:02Z) - Multi-Label Image Classification with Contrastive Learning [57.47567461616912]
We show that a direct application of contrastive learning can hardly improve in multi-label cases.
We propose a novel framework for multi-label classification with contrastive learning in a fully supervised setting.
arXiv Detail & Related papers (2021-07-24T15:00:47Z) - Learning to Focus: Cascaded Feature Matching Network for Few-shot Image
Recognition [38.49419948988415]
Deep networks can learn to accurately recognize objects of a category by training on a large number of images.
A meta-learning challenge known as a low-shot image recognition task comes when only a few images with annotations are available for learning a recognition model for one category.
Our method, called Cascaded Feature Matching Network (CFMN), is proposed to solve this problem.
Experiments for few-shot learning on two standard datasets, emphminiImageNet and Omniglot, have confirmed the effectiveness of our method.
arXiv Detail & Related papers (2021-01-13T11:37:28Z) - Minimax Active Learning [61.729667575374606]
Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
arXiv Detail & Related papers (2020-12-18T19:03:40Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Enhancing Few-Shot Image Classification with Unlabelled Examples [18.03136114355549]
We develop a transductive meta-learning method that uses unlabelled instances to improve few-shot image classification performance.
Our approach combines a regularized neural adaptive feature extractor to achieve improved test-time classification accuracy using unlabelled data.
arXiv Detail & Related papers (2020-06-17T05:42:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.