Visual Instruction Tuning with Chain of Region-of-Interest
- URL: http://arxiv.org/abs/2505.06840v1
- Date: Sun, 11 May 2025 04:44:03 GMT
- Title: Visual Instruction Tuning with Chain of Region-of-Interest
- Authors: Yixin Chen, Shuai Zhang, Boran Han, Bernie Wang,
- Abstract summary: We propose a method called Chain of Region-of-Interest (CoRoI) for Visual Instruction Tuning.<n>CoRoI seeks to identify and prioritize the most informative regions, thereby enhancing multimodal visual comprehension and recognition.<n>Our models consistently demonstrate superior performance across diverse multimodal benchmarks and tasks.
- Score: 9.111425648646229
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-resolution (HR) images are pivotal for enhancing the recognition and understanding capabilities of multimodal large language models (MLLMs). However, directly increasing image resolution can significantly escalate computational demands. In this study, we propose a method called Chain of Region-of-Interest (CoRoI) for Visual Instruction Tuning, aimed at alleviating the computational burden associated with high-resolution images for MLLMs. Drawing inspiration from the selective nature of the human visual system, we recognize that not all regions within high-resolution images carry equal importance. CoRoI seeks to identify and prioritize the most informative regions, thereby enhancing multimodal visual comprehension and recognition while circumventing the need for processing lengthy HR image tokens. Through extensive experiments on 11 benchmarks, we validate the efficacy of CoRoI across varying sizes, ranging from 7B to 34B in parameters. Our models consistently demonstrate superior performance across diverse multimodal benchmarks and tasks. Notably, our method outperforms LLaVA-NeXT on almost all benchmarks and our finetuned 34B model surpasses proprietary methods like Gemini Pro 1.0 on six benchmarks, as well as outperforming GPT-4V on MMB, SEED-I, and MME.
Related papers
- PeRL: Permutation-Enhanced Reinforcement Learning for Interleaved Vision-Language Reasoning [50.21619363035618]
We propose a general reinforcement learning approach PeRL tailored for interleaved multimodal tasks.<n>We introduce permutation of image sequences to simulate varied positional relationships to explore more spatial and positional diversity.<n>Our experiments confirm that PeRL trained model consistently surpasses R1-related and interleaved VLM baselines by a large margin.
arXiv Detail & Related papers (2025-06-17T18:25:56Z) - Search is All You Need for Few-shot Anomaly Detection [39.737510049667556]
Few-shot anomaly detection (FSAD) has emerged as a crucial yet challenging task in industrial inspection.<n>We show that a straightforward nearest-neighbor search framework can surpass state-of-the-art performance in both single-class and multi-class FSAD scenarios.<n>Our method achieves remarkable image-level AUROC scores of 97.4%, 94.8%, and 70.8% respectively.
arXiv Detail & Related papers (2025-04-16T09:21:34Z) - Global Semantic-Guided Sub-image Feature Weight Allocation in High-Resolution Large Vision-Language Models [50.98559225639266]
Sub-images with higher semantic relevance to the entire image encapsulate richer visual information for preserving the model's visual understanding ability.<n>Global Semantic-guided Weight Allocator (GSWA) module allocates weights to sub-images based on their relative information density.<n>SleighVL, a lightweight yet high-performing model, outperforms models with comparable parameters and remains competitive with larger models.
arXiv Detail & Related papers (2025-01-24T06:42:06Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
We propose MMEvol, a novel multimodal instruction data evolution framework.<n>MMEvol iteratively improves data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution.<n>Our approach reaches state-of-the-art (SOTA) performance in nine tasks using significantly less data compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-09T17:44:00Z) - Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
Unfolding fusion methods integrate the powerful representation capabilities of deep learning with the robustness of model-based approaches.
In this paper, we propose a model-based deep unfolded method for satellite image fusion.
Experimental results on PRISMA, Quickbird, and WorldView2 datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2024-09-04T13:05:00Z) - Divide, Conquer and Combine: A Training-Free Framework for High-Resolution Image Perception in Multimodal Large Language Models [57.280853324896306]
Multimodal large language models (MLLMs) struggle to recognize and interpret intricate details in high-resolution (HR) images effectively.
We introduce HR-Bench, the first deliberately designed benchmark to rigorously evaluate MLLM performance on 4K&8K images.
We propose Divide, Conquer and Combine (DC$2$), a novel training-free framework for enhancing MLLM perception of HR images.
arXiv Detail & Related papers (2024-08-28T06:09:02Z) - MMIU: Multimodal Multi-image Understanding for Evaluating Large Vision-Language Models [76.1999277491816]
Multimodal Multi-image Understanding (MMIU) is a comprehensive evaluation suite designed to assess Large Vision-Language Models (LVLMs)
MMIU encompasses 7 types of multi-image relationships, 52 tasks, 77K images, and 11K meticulously curated multiple-choice questions.
Our evaluation of 24 popular LVLMs, including both open-source and proprietary models, reveals significant challenges in multi-image comprehension.
arXiv Detail & Related papers (2024-08-05T17:56:41Z) - Visual Haystacks: A Vision-Centric Needle-In-A-Haystack Benchmark [63.296342841358815]
Large Multimodal Models (LMMs) have made significant strides in visual question-answering for single images.<n>The ability to process a large number of visual tokens does not guarantee effective retrieval and reasoning for multi-image question answering.<n>We introduce MIRAGE, an open-source, lightweight visual-RAG framework that processes up to 10k images on a single 40G A100 GPU.
arXiv Detail & Related papers (2024-07-18T17:59:30Z) - Benchmarking Multi-Image Understanding in Vision and Language Models: Perception, Knowledge, Reasoning, and Multi-Hop Reasoning [15.296263261737026]
We introduce a Multi-Image MIRB Benchmark to evaluate visual language models' ability to compare, analyze, and reason across multiple images.
Our benchmark encompasses four categories: perception, visual world knowledge, reasoning, and multi-hop reasoning.
We demonstrate that while open-source VLMs were shown to approach the GPT-4V in single-image tasks, a significant gap remains in multi-image reasoning tasks.
arXiv Detail & Related papers (2024-06-18T16:02:18Z) - DEEM: Diffusion Models Serve as the Eyes of Large Language Models for Image Perception [66.88792390480343]
We propose DEEM, a simple but effective approach that utilizes the generative feedback of diffusion models to align the semantic distributions of the image encoder.<n>DEEM exhibits enhanced robustness and a superior capacity to alleviate model hallucinations while utilizing fewer trainable parameters, less pre-training data, and a smaller base model size.
arXiv Detail & Related papers (2024-05-24T05:46:04Z) - Multi-Scale VMamba: Hierarchy in Hierarchy Visual State Space Model [26.786890883280062]
State Space Models (SSMs) have garnered widespread attention due to their global receptive field and linear complexity.
To improve the performance of SSMs in vision tasks, a multi-scan strategy is widely adopted.
We introduce Multi-Scale Vision Mamba (MSVMamba) to preserve the superiority of SSMs in vision tasks with limited parameters.
arXiv Detail & Related papers (2024-05-23T04:59:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.