論文の概要: Predicting Surgical Safety Margins in Osteosarcoma Knee Resections: An Unsupervised Approach
- arxiv url: http://arxiv.org/abs/2505.06853v1
- Date: Sun, 11 May 2025 05:41:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:49.072998
- Title: Predicting Surgical Safety Margins in Osteosarcoma Knee Resections: An Unsupervised Approach
- Title(参考訳): 膝骨肉腫手術における術中安全マージンの予測 : 非観血的アプローチ
- Authors: Carolina Vargas-Ecos, Edwin Salcedo,
- Abstract要約: ラテンアメリカのがん患者数は2022年に420万人と推定され、2045年までに670万人に達すると予測されている。
本研究では,膝周囲の骨肉腫手術における安全マージンの信頼区間を推定する方法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: According to the Pan American Health Organization, the number of cancer cases in Latin America was estimated at 4.2 million in 2022 and is projected to rise to 6.7 million by 2045. Osteosarcoma, one of the most common and deadly bone cancers affecting young people, is difficult to detect due to its unique texture and intensity. Surgical removal of osteosarcoma requires precise safety margins to ensure complete resection while preserving healthy tissue. Therefore, this study proposes a method for estimating the confidence interval of surgical safety margins in osteosarcoma surgery around the knee. The proposed approach uses MRI and X-ray data from open-source repositories, digital processing techniques, and unsupervised learning algorithms (such as k-means clustering) to define tumor boundaries. Experimental results highlight the potential for automated, patient-specific determination of safety margins.
- Abstract(参考訳): パンアメリカン・ヘルス・オーガナイゼーション(Pan American Health Organization)によると、2022年にはラテンアメリカのがん症例数は420万件と推定され、2045年には670万件に達すると予測されている。
若年者に影響を与える最も一般的で致命的な骨癌の1つである骨肉腫は、独特のテクスチャと強度のために検出が困難である。
骨肉腫の外科的切除は、健全な組織を保存しながら完全な切除を確実にするために、正確な安全マージンを必要とする。
そこで本研究では,膝周囲の骨肉腫手術における安全マージンの信頼区間を推定する方法を提案する。
提案手法では,オープンソースリポジトリからのMRIとX線データ,デジタル処理技術,および教師なし学習アルゴリズム(k平均クラスタリングなど)を用いて腫瘍の境界を定義する。
実験結果は、患者固有の安全マージンの自動決定の可能性を強調している。
関連論文リスト
- Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
ネオアジュバント化学療法は乳癌の治療戦略として最近人気を集めている。
ネオアジュバント化学療法を推奨する現在のプロセスは、医療専門家の主観的評価に依存している。
本研究は, 乳癌の病理組織学的完全反応予測に最適化されたCDI$s$を応用することを検討した。
論文 参考訳(メタデータ) (2024-05-13T15:40:56Z) - Predicting breast cancer with AI for individual risk-adjusted MRI
screening and early detection [1.3367806441522678]
本稿では,現在のMRIに基づいて1年以内に乳癌の発症リスクを予測することを提案する。
検診・診断を施行した12,694例の乳房53,858例を対象にAIアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-11-29T19:52:53Z) - Can-SAVE: Mass Cancer Risk Prediction via Survival Analysis Variables and EHR [1.29410702835589]
特定のがんスクリーニング法は、しばしば費用がかかり、時間がかかり、大規模に適用できる。
本稿では,Can-SAVE癌リスク評価手法を提案する。
アクセス性が高く、資源効率が良く、一連の高レベルの医療イベントのみを利用する。
論文 参考訳(メタデータ) (2023-09-26T16:15:54Z) - Safe Deep RL for Intraoperative Planning of Pedicle Screw Placement [61.28459114068828]
安全な深部強化学習(DRL)に基づく訓練経路計画にリアルタイムな観察を活用するロボット脊椎手術の術中計画手法を提案する。
本手法は,ゴールドスタンダード (GS) 掘削計画に関して,90%の骨貫通を達成できた。
論文 参考訳(メタデータ) (2023-05-09T11:42:53Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
肺がんは世界中のがん死亡の原因であり、効果的な治療法を設計するための死亡リスクを理解することの重要性を強調している。
NLST(National Lung Screening Trial)は、肺がん患者の死亡リスクを定量化するために、CTテクスチャ解析を用いている。
本稿では,SCADペナルティを組み込んで重要なテクスチャ特徴を抽出し,深層ニューラルネットワークを用いてモデルの非パラメトリック成分を推定する,Pentalized Deep partially Linear Cox Model (Penalized DPLC)を提案する。
論文 参考訳(メタデータ) (2023-03-09T15:38:16Z) - Radiomics-enhanced Deep Multi-task Learning for Outcome Prediction in
Head and Neck Cancer [11.795108660250843]
PET/CT画像から結果を予測するために,放射能を増強したディープマルチタスクフレームワークを提案する。
我々は最近提案したDeep Multi-task Survival Model(DeepMTS)の強化として放射能を取り入れることが新しい。
テストセットではCインデックス0.681を達成し,第2位は第1位よりCインデックス0.00068低いリーダボードに配置した。
論文 参考訳(メタデータ) (2022-11-10T08:28:56Z) - Opportunistic hip fracture risk prediction in Men from X-ray: Findings
from the Osteoporosis in Men (MrOS) Study [0.7340017786387765]
骨粗しょう症は骨折のリスクを増大させる一般的な疾患である。
特に高齢者の股関節骨折は、死亡率の上昇、生活の質の低下、死亡率の上昇につながる。
骨折前は無症候性疾患であったため、骨粗しょう症は診断されず、治療を受けていないことが多い。
論文 参考訳(メタデータ) (2022-07-22T09:35:48Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
骨分解性骨病変の進展を正確に予測し,可視化する深層学習フレームワークを開発した。
乳癌患者の骨格関連事象(SRE)を予防するための治療戦略の計画と評価を支援する。
論文 参考訳(メタデータ) (2022-03-20T21:00:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。