Near-Field Channel Estimation for XL-MIMO: A Deep Generative Model Guided by Side Information
- URL: http://arxiv.org/abs/2505.06900v1
- Date: Sun, 11 May 2025 08:35:36 GMT
- Title: Near-Field Channel Estimation for XL-MIMO: A Deep Generative Model Guided by Side Information
- Authors: Zhenzhou Jin, Li You, Derrick Wing Kwan Ng, Xiang-Gen Xia, Xiqi Gao,
- Abstract summary: This paper investigates the near-field (NF) channel estimation for large-scale multiple-input multiple-output (XL-MIMO) systems.<n>We propose a GenAI-based approach to refine the estimated channel.<n> Experimental results indicate that the proposed approach is capable of offering substantial performance gain in CE.
- Score: 70.25632840894272
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper investigates the near-field (NF) channel estimation (CE) for extremely large-scale multiple-input multiple-output (XL-MIMO) systems. Considering the pronounced NF effects in XL-MIMO communications, we first establish a joint angle-distance (AD) domain-based spherical-wavefront physical channel model that captures the inherent sparsity of XL-MIMO channels. Leveraging the channel's sparsity in the joint AD domain, the CE is approached as a task of reconstructing sparse signals. Anchored in this framework, we first propose a compressed sensing algorithm to acquire a preliminary channel estimate. Harnessing the powerful implicit prior learning capability of generative artificial intelligence (GenAI), we further propose a GenAI-based approach to refine the estimated channel. Specifically, we introduce the preliminary estimated channel as side information, and derive the evidence lower bound (ELBO) of the log-marginal distribution of the target NF channel conditioned on the preliminary estimated channel, which serves as the optimization objective for the proposed generative diffusion model (GDM). Additionally, we introduce a more generalized version of the GDM, the non-Markovian GDM (NM-GDM), to accelerate the sampling process, achieving an approximately tenfold enhancement in sampling efficiency. Experimental results indicate that the proposed approach is capable of offering substantial performance gain in CE compared to existing benchmark schemes within NF XL-MIMO systems. Furthermore, our approach exhibits enhanced generalization capabilities in both the NF or far-field (FF) regions.
Related papers
- Channel Fingerprint Construction for Massive MIMO: A Deep Conditional Generative Approach [65.47969413708344]
We introduce the concept of CF twins and design a conditional generative diffusion model (CGDM)<n>We employ a variational inference technique to derive the evidence lower bound (ELBO) for the log-marginal distribution of the observed fine-grained CF conditioned on the coarse-grained CF.<n>We show that the proposed approach exhibits significant improvement in reconstruction performance compared to the baselines.
arXiv Detail & Related papers (2025-05-12T01:36:06Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Pay Less But Get More: A Dual-Attention-based Channel Estimation Network
for Massive MIMO Systems with Low-Density Pilots [41.213515826100696]
We propose a dual-attention-based channel estimation network (DACEN) to realize accurate channel estimation via low-density pilots.
Experimental results reveal that the proposed DACEN-based method achieves better channel estimation performance than the existing methods.
arXiv Detail & Related papers (2023-03-02T05:34:25Z) - Deep Generative Models for Downlink Channel Estimation in FDD Massive
MIMO Systems [13.267048706241157]
We propose a deep generative model (DGM)-based technique to address this challenge.
Exploiting the partial reciprocity of uplink and downlink channels, we first estimate the frequency-independent underlying channel parameters.
Then, the frequency-specific underlying channel parameters, namely, the phase of each propagation path, are estimated via downlink training.
arXiv Detail & Related papers (2022-03-09T18:32:10Z) - Deep Diffusion Models for Robust Channel Estimation [1.7259824817932292]
We introduce a novel approach for multiple-input multiple-output (MIMO) channel estimation using deep diffusion models.
Our method uses a deep neural network that is trained to estimate the gradient of the log-likelihood of wireless channels at any point in high-dimensional space.
arXiv Detail & Related papers (2021-11-16T01:32:11Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - CNN based Channel Estimation using NOMA for mmWave Massive MIMO System [0.0]
This paper proposes a convolutional neural network based approach to estimate the channel for millimeter wave (mmWave) systems built on a hybrid architecture.
A coarse estimation of the channel is first made from the received signal.
Numerical illustrations show that the proposed method outperforms least square (LS) estimate, minimum mean square error (MMSE) estimate and are close to the Cramer-Rao Bound (CRB)
arXiv Detail & Related papers (2021-08-01T05:33:55Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
A novel framework is proposed to perform data-driven air-to-ground (A2G) channel estimation for millimeter wave (mmWave) communications in an unmanned aerial vehicle (UAV) wireless network.
An effective channel estimation approach is developed, allowing each UAV to train a stand-alone channel model via a conditional generative adversarial network (CGAN) along each beamforming direction.
A cooperative framework, based on a distributed CGAN architecture, is developed, allowing each UAV to collaboratively learn the mmWave channel distribution.
arXiv Detail & Related papers (2021-02-02T20:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.