Channel Fingerprint Construction for Massive MIMO: A Deep Conditional Generative Approach
- URL: http://arxiv.org/abs/2505.07893v1
- Date: Mon, 12 May 2025 01:36:06 GMT
- Title: Channel Fingerprint Construction for Massive MIMO: A Deep Conditional Generative Approach
- Authors: Zhenzhou Jin, Li You, Xudong Li, Zhen Gao, Yuanwei Liu, Xiang-Gen Xia, Xiqi Gao,
- Abstract summary: We introduce the concept of CF twins and design a conditional generative diffusion model (CGDM)<n>We employ a variational inference technique to derive the evidence lower bound (ELBO) for the log-marginal distribution of the observed fine-grained CF conditioned on the coarse-grained CF.<n>We show that the proposed approach exhibits significant improvement in reconstruction performance compared to the baselines.
- Score: 65.47969413708344
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate channel state information (CSI) acquisition for massive multiple-input multiple-output (MIMO) systems is essential for future mobile communication networks. Channel fingerprint (CF), also referred to as channel knowledge map, is a key enabler for intelligent environment-aware communication and can facilitate CSI acquisition. However, due to the cost limitations of practical sensing nodes and test vehicles, the resulting CF is typically coarse-grained, making it insufficient for wireless transceiver design. In this work, we introduce the concept of CF twins and design a conditional generative diffusion model (CGDM) with strong implicit prior learning capabilities as the computational core of the CF twin to establish the connection between coarse- and fine-grained CFs. Specifically, we employ a variational inference technique to derive the evidence lower bound (ELBO) for the log-marginal distribution of the observed fine-grained CF conditioned on the coarse-grained CF, enabling the CGDM to learn the complicated distribution of the target data. During the denoising neural network optimization, the coarse-grained CF is introduced as side information to accurately guide the conditioned generation of the CGDM. To make the proposed CGDM lightweight, we further leverage the additivity of network layers and introduce a one-shot pruning approach along with a multi-objective knowledge distillation technique. Experimental results show that the proposed approach exhibits significant improvement in reconstruction performance compared to the baselines. Additionally, zero-shot testing on reconstruction tasks with different magnification factors further demonstrates the scalability and generalization ability of the proposed approach.
Related papers
- A MIMO Wireless Channel Foundation Model via CIR-CSI Consistency [19.658024410165112]
This paper treats Channel State Information (CSI) and Channel Impulse Response (CIR) as naturally aligned multi-modal data.<n>By effectively capturing the joint representations of both CIR and CSI, CSI-CLIP exhibits remarkable adaptability across scenarios.
arXiv Detail & Related papers (2025-02-17T16:13:40Z) - CF-CGN: Channel Fingerprints Extrapolation for Multi-band Massive MIMO Transmission based on Cycle-Consistent Generative Networks [26.720410416586677]
Multi-band massive multiple-input multiple-output (MIMO) communication can promote the cooperation of licensed and unlicensed spectra.<n>Channel fingerprints (CF) are used to assist channel state information (CSI) acquisition and reduce computational complexity.<n>We propose CF-CGN to extrapolate CF for multi-band massive MIMO transmission where licensed and unlicensed spectra cooperate to provide ubiquitous connectivity.
arXiv Detail & Related papers (2024-12-30T11:52:39Z) - CCDepth: A Lightweight Self-supervised Depth Estimation Network with Enhanced Interpretability [11.076431337488973]
This study proposes a novel hybrid self-supervised depth estimation network, CCDepth, comprising convolutional neural networks (CNNs) and the white-box CRATE network.
This novel network uses CNNs and the CRATE modules to extract local and global information in images, respectively, thereby boosting learning efficiency and reducing model size.
arXiv Detail & Related papers (2024-09-30T04:19:40Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Kernel function impact on convolutional neural networks [10.98068123467568]
We study the usage of kernel functions at the different layers in a convolutional neural network.
We show how one can effectively leverage kernel functions, by introducing a more distortion aware pooling layers.
We propose Kernelized Dense Layers (KDL), which replace fully-connected layers.
arXiv Detail & Related papers (2023-02-20T19:57:01Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks.
Transformers that need to incorporate contextual information to extract features dynamically are neglected.
We propose a lightweight Cross-receptive Focused Inference Network (CFIN) that consists of a cascade of CT Blocks mixed with CNN and Transformer.
arXiv Detail & Related papers (2022-07-06T16:32:29Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
We develop a novel graph sumable framework to maximize energy efficiency in wireless communication networks.
We show the permutation training which is a desirable property for models of wireless network data.
Results demonstrate its generalizability across different network topologies.
arXiv Detail & Related papers (2022-01-27T20:23:24Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z) - A Transductive Multi-Head Model for Cross-Domain Few-Shot Learning [72.30054522048553]
We present a new method, Transductive Multi-Head Few-Shot learning (TMHFS), to address the Cross-Domain Few-Shot Learning challenge.
The proposed methods greatly outperform the strong baseline, fine-tuning, on four different target domains.
arXiv Detail & Related papers (2020-06-08T02:39:59Z) - Searching Central Difference Convolutional Networks for Face
Anti-Spoofing [68.77468465774267]
Face anti-spoofing (FAS) plays a vital role in face recognition systems.
Most state-of-the-art FAS methods rely on stacked convolutions and expert-designed network.
Here we propose a novel frame level FAS method based on Central Difference Convolution (CDC)
arXiv Detail & Related papers (2020-03-09T12:48:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.