Enhancing Monocular Height Estimation via Sparse LiDAR-Guided Correction
- URL: http://arxiv.org/abs/2505.06905v1
- Date: Sun, 11 May 2025 08:54:09 GMT
- Title: Enhancing Monocular Height Estimation via Sparse LiDAR-Guided Correction
- Authors: Jian Song, Hongruixuan Chen, Naoto Yokoya,
- Abstract summary: We investigate a state-of-the-art MHE model trained purely on synthetic data.<n>We find that the model relies heavily on shadow cues, a factor that can lead to overestimation or underestimation of heights.<n>We propose a novel correction pipeline that integrates sparse, imperfect global LiDAR measurements.
- Score: 18.671925059007478
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Monocular height estimation (MHE) from very-high-resolution (VHR) remote sensing imagery via deep learning is notoriously challenging due to the lack of sufficient structural information. Conventional digital elevation models (DEMs), typically derived from airborne LiDAR or multi-view stereo, remain costly and geographically limited. Recently, models trained on synthetic data and refined through domain adaptation have shown remarkable performance in MHE, yet it remains unclear how these models make predictions or how reliable they truly are. In this paper, we investigate a state-of-the-art MHE model trained purely on synthetic data to explore where the model looks when making height predictions. Through systematic analyses, we find that the model relies heavily on shadow cues, a factor that can lead to overestimation or underestimation of heights when shadows deviate from expected norms. Furthermore, the inherent difficulty of evaluating regression tasks with the human eye underscores additional limitations of purely synthetic training. To address these issues, we propose a novel correction pipeline that integrates sparse, imperfect global LiDAR measurements (ICESat-2) with deep-learning outputs to improve local accuracy and achieve spatially consistent corrections. Our method comprises two stages: pre-processing raw ICESat-2 data, followed by a random forest-based approach to densely refine height estimates. Experiments in three representative urban regions -- Saint-Omer, Tokyo, and Sao Paulo -- reveal substantial error reductions, with mean absolute error (MAE) decreased by 22.8\%, 6.9\%, and 4.9\%, respectively. These findings highlight the critical role of shadow awareness in synthetic data-driven models and demonstrate how fusing imperfect real-world LiDAR data can bolster the robustness of MHE, paving the way for more reliable and scalable 3D mapping solutions.
Related papers
- DEPTHOR: Depth Enhancement from a Practical Light-Weight dToF Sensor and RGB Image [8.588871458005114]
We propose a novel completion-based method, named DEPTHOR, for depth enhancement in computer vision.<n>First, we simulate real-world dToF data from the accurate ground truth in synthetic datasets to enable noise-robust training.<n>Second, we design a novel network that incorporates monocular depth estimation (MDE), leveraging global depth relationships and contextual information to improve prediction in challenging regions.
arXiv Detail & Related papers (2025-04-02T11:02:21Z) - MetricGold: Leveraging Text-To-Image Latent Diffusion Models for Metric Depth Estimation [9.639797094021988]
MetricGold is a novel approach that harnesses generative diffusion model's rich priors to improve metric depth estimation.<n>Our experiments demonstrate robust generalization across diverse datasets, producing sharper and higher quality metric depth estimates.
arXiv Detail & Related papers (2024-11-16T20:59:01Z) - TanDepth: Leveraging Global DEMs for Metric Monocular Depth Estimation in UAVs [5.6168844664788855]
This work presents TanDepth, a practical scale recovery method for obtaining metric depth results from relative estimations at inference-time.<n>Our method leverages sparse measurements from Global Digital Elevation Models (GDEM) by projecting them to the camera view.<n>An adaptation to the Cloth Filter Simulation is presented, which allows selecting ground points from the estimated depth map to then correlate with the projected reference points.
arXiv Detail & Related papers (2024-09-08T15:54:43Z) - Uncertainty-guided Optimal Transport in Depth Supervised Sparse-View 3D Gaussian [49.21866794516328]
3D Gaussian splatting has demonstrated impressive performance in real-time novel view synthesis.
Previous approaches have incorporated depth supervision into the training of 3D Gaussians to mitigate overfitting.
We introduce a novel method to supervise the depth distribution of 3D Gaussians, utilizing depth priors with integrated uncertainty estimates.
arXiv Detail & Related papers (2024-05-30T03:18:30Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with Pre-trained Vision-Language Models [59.13757801286343]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.<n>We introduce the FILP-3D framework with two novel components: the Redundant Feature Eliminator (RFE) for feature space misalignment and the Spatial Noise Compensator (SNC) for significant noise.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Self-supervised Human Mesh Recovery with Cross-Representation Alignment [20.69546341109787]
Self-supervised human mesh recovery methods have poor generalizability due to limited availability and diversity of 3D-annotated benchmark datasets.
We propose cross-representation alignment utilizing the complementary information from the robust but sparse representation (2D keypoints)
This adaptive cross-representation alignment explicitly learns from the deviations and captures complementary information: richness from sparse representation and robustness from dense representation.
arXiv Detail & Related papers (2022-09-10T04:47:20Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Robust Self-Supervised LiDAR Odometry via Representative Structure
Discovery and 3D Inherent Error Modeling [67.75095378830694]
We develop a two-stage odometry estimation network, where we obtain the ego-motion by estimating a set of sub-region transformations.
In this paper, we aim to alleviate the influence of unreliable structures in training, inference and mapping phases.
Our two-frame odometry outperforms the previous state of the arts by 16%/12% in terms of translational/rotational errors.
arXiv Detail & Related papers (2022-02-27T12:52:27Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
We propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO, to tackle these two difficulties.
Specifically, we propose a 3D convolution network to process the raw LiDAR data directly, which extracts features that better encode the 3D geometric patterns.
We evaluate our method's performances on two large-scale datasets, i.e., KITTI and Apollo-SouthBay.
arXiv Detail & Related papers (2020-10-19T09:23:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.