Unsupervised Learning for Class Distribution Mismatch
- URL: http://arxiv.org/abs/2505.06948v1
- Date: Sun, 11 May 2025 11:29:48 GMT
- Title: Unsupervised Learning for Class Distribution Mismatch
- Authors: Pan Du, Wangbo Zhao, Xinai Lu, Nian Liu, Zhikai Li, Chaoyu Gong, Suyun Zhao, Hong Chen, Cuiping Li, Kai Wang, Yang You,
- Abstract summary: Class distribution mismatch (CDM) refers to discrepancy between class distributions in training data and target tasks.<n>We propose Unsupervised Learning for Class Distribution Mismatch (UCDM), which constructs positive-negative pairs from unlabeled data.<n>Our approach randomly samples images and uses a diffusion model to add or erase semantic classes, diverse training pairs.
- Score: 35.94294492756003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Class distribution mismatch (CDM) refers to the discrepancy between class distributions in training data and target tasks. Previous methods address this by designing classifiers to categorize classes known during training, while grouping unknown or new classes into an "other" category. However, they focus on semi-supervised scenarios and heavily rely on labeled data, limiting their applicability and performance. To address this, we propose Unsupervised Learning for Class Distribution Mismatch (UCDM), which constructs positive-negative pairs from unlabeled data for classifier training. Our approach randomly samples images and uses a diffusion model to add or erase semantic classes, synthesizing diverse training pairs. Additionally, we introduce a confidence-based labeling mechanism that iteratively assigns pseudo-labels to valuable real-world data and incorporates them into the training process. Extensive experiments on three datasets demonstrate UCDM's superiority over previous semi-supervised methods. Specifically, with a 60% mismatch proportion on Tiny-ImageNet dataset, our approach, without relying on labeled data, surpasses OpenMatch (with 40 labels per class) by 35.1%, 63.7%, and 72.5% in classifying known, unknown, and new classes.
Related papers
- Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - JointMatch: A Unified Approach for Diverse and Collaborative
Pseudo-Labeling to Semi-Supervised Text Classification [65.268245109828]
Semi-supervised text classification (SSTC) has gained increasing attention due to its ability to leverage unlabeled data.
Existing approaches based on pseudo-labeling suffer from the issues of pseudo-label bias and error accumulation.
We propose JointMatch, a holistic approach for SSTC that addresses these challenges by unifying ideas from recent semi-supervised learning.
arXiv Detail & Related papers (2023-10-23T05:43:35Z) - On Non-Random Missing Labels in Semi-Supervised Learning [114.62655062520425]
Semi-Supervised Learning (SSL) is fundamentally a missing label problem.
We explicitly incorporate "class" into SSL.
Our method not only significantly outperforms existing baselines but also surpasses other label bias removal SSL methods.
arXiv Detail & Related papers (2022-06-29T22:01:29Z) - Out-of-Distribution Detection without Class Labels [29.606812876314386]
Anomaly detection methods identify samples that deviate from the normal behavior of the dataset.
Current methods struggle when faced with training data consisting of multiple classes but no labels.
We first cluster images using self-supervised methods and obtain a cluster label for every image.
We finetune pretrained features on the task of classifying images by their cluster labels.
arXiv Detail & Related papers (2021-12-14T18:58:32Z) - Improving Contrastive Learning on Imbalanced Seed Data via Open-World
Sampling [96.8742582581744]
We present an open-world unlabeled data sampling framework called Model-Aware K-center (MAK)
MAK follows three simple principles: tailness, proximity, and diversity.
We demonstrate that MAK can consistently improve both the overall representation quality and the class balancedness of the learned features.
arXiv Detail & Related papers (2021-11-01T15:09:41Z) - Re-distributing Biased Pseudo Labels for Semi-supervised Semantic
Segmentation: A Baseline Investigation [30.688753736660725]
We present a simple and yet effective Distribution Alignment and Random Sampling (DARS) method to produce unbiased pseudo labels.
Our method performs favorably in comparison with state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-23T14:45:14Z) - Boosting the Performance of Semi-Supervised Learning with Unsupervised
Clustering [10.033658645311188]
We show that ignoring labels altogether for whole epochs intermittently during training can significantly improve performance in the small sample regime.
We demonstrate our method's efficacy in boosting several state-of-the-art SSL algorithms.
arXiv Detail & Related papers (2020-12-01T14:19:14Z) - Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive
Person Re-Identification [64.37745443119942]
This paper jointly enforces visual and temporal consistency in the combination of a local one-hot classification and a global multi-class classification.
Experimental results on three large-scale ReID datasets demonstrate the superiority of proposed method in both unsupervised and unsupervised domain adaptive ReID tasks.
arXiv Detail & Related papers (2020-07-21T14:31:27Z) - Automatically Discovering and Learning New Visual Categories with
Ranking Statistics [145.89790963544314]
We tackle the problem of discovering novel classes in an image collection given labelled examples of other classes.
We learn a general-purpose clustering model and use the latter to identify the new classes in the unlabelled data.
We evaluate our approach on standard classification benchmarks and outperform current methods for novel category discovery by a significant margin.
arXiv Detail & Related papers (2020-02-13T18:53:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.