Causal knowledge graph analysis identifies adverse drug effects
- URL: http://arxiv.org/abs/2505.06949v1
- Date: Sun, 11 May 2025 11:35:43 GMT
- Title: Causal knowledge graph analysis identifies adverse drug effects
- Authors: Sumyyah Toonsi, Paul Schofield, Robert Hoehndorf,
- Abstract summary: We introduce a novel formulation of Causal Knowledge Graphs (CKGs)<n>CKGs extend knowledge graphs with formal causal semantics, preserving their deductive capabilities while enabling principled causal inference.<n>We constructed a Drug-Disease CKG integrating disease progression pathways, drug indications, side-effects, and hierarchical disease classification to enable automated large-scale mediation analysis.
- Score: 0.8953677815921737
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Knowledge graphs and structural causal models have each proven valuable for organizing biomedical knowledge and estimating causal effects, but remain largely disconnected: knowledge graphs encode qualitative relationships focusing on facts and deductive reasoning without formal probabilistic semantics, while causal models lack integration with background knowledge in knowledge graphs and have no access to the deductive reasoning capabilities that knowledge graphs provide. To bridge this gap, we introduce a novel formulation of Causal Knowledge Graphs (CKGs) which extend knowledge graphs with formal causal semantics, preserving their deductive capabilities while enabling principled causal inference. CKGs support deconfounding via explicitly marked causal edges and facilitate hypothesis formulation aligned with both encoded and entailed background knowledge. We constructed a Drug-Disease CKG (DD-CKG) integrating disease progression pathways, drug indications, side-effects, and hierarchical disease classification to enable automated large-scale mediation analysis. Applied to UK Biobank and MIMIC-IV cohorts, we tested whether drugs mediate effects between indications and downstream disease progression, adjusting for confounders inferred from the DD-CKG. Our approach successfully reproduced known adverse drug reactions with high precision while identifying previously undocumented significant candidate adverse effects. Further validation through side effect similarity analysis demonstrated that combining our predicted drug effects with established databases significantly improves the prediction of shared drug indications, supporting the clinical relevance of our novel findings. These results demonstrate that our methodology provides a generalizable, knowledge-driven framework for scalable causal inference.
Related papers
- KEPLA: A Knowledge-Enhanced Deep Learning Framework for Accurate Protein-Ligand Binding Affinity Prediction [60.23701115249195]
KEPLA is a novel deep learning framework that integrates prior knowledge from Gene Ontology and ligand properties to enhance prediction performance.<n> Experiments on two benchmark datasets demonstrate that KEPLA consistently outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2025-06-16T08:02:42Z) - Do-PFN: In-Context Learning for Causal Effect Estimation [75.62771416172109]
We show that Prior-data fitted networks (PFNs) can be pre-trained on synthetic data to predict outcomes.<n>Our approach allows for the accurate estimation of causal effects without knowledge of the underlying causal graph.
arXiv Detail & Related papers (2025-06-06T12:43:57Z) - A Systematic Evaluation of Knowledge Graph Embeddings for Gene-Disease Association Prediction [0.0]
This work introduces a novel framework for comparing the performance of link prediction versus node-pair classification tasks.<n>It also evaluates the impact of the semantic richness through a disease-specific ontology and additional links between evaluation.<n>Results show that enriching the encoded representation of diseases slightly improves performance, while additional links generate a greater impact.
arXiv Detail & Related papers (2025-04-11T11:11:35Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
This paper presents Causal representatiOn AssistanT (COAT) that introduces large language models (LLMs) to bridge the gap.
LLMs are trained on massive observations of the world and have demonstrated great capability in extracting key information from unstructured data.
COAT also adopts CDs to find causal relations among the identified variables as well as to provide feedback to LLMs to iteratively refine the proposed factors.
arXiv Detail & Related papers (2024-02-06T12:18:54Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - Fact-Checking Generative AI: Ontology-Driven Biological Graphs for Disease-Gene Link Verification [45.65374554914359]
We aim to achieve fact-checking of the knowledge embedded in biological graphs that were contrived from ChatGPT contents.
We adopted a biological networks approach that enables the systematic interrogation of ChatGPT's linked entities.
This study demonstrated high accuracy of aggregate disease-gene links relationships found in ChatGPT-generated texts.
arXiv Detail & Related papers (2023-08-07T22:13:30Z) - Optimizing Data-driven Causal Discovery Using Knowledge-guided Search [3.7489744097107316]
This study introduces a knowledge-guided causal structure search (KGS) approach that utilizes observational data and structural priors as constraints to learn the causal graph.
We extensively evaluate KGS in multiple settings using synthetic and benchmark real-world datasets, as well as in a real-life healthcare application related to oxygen therapy treatment.
arXiv Detail & Related papers (2023-04-11T20:56:33Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - CausalDialogue: Modeling Utterance-level Causality in Conversations [83.03604651485327]
We have compiled and expanded upon a new dataset called CausalDialogue through crowd-sourcing.
This dataset includes multiple cause-effect pairs within a directed acyclic graph (DAG) structure.
We propose a causality-enhanced method called Exponential Average Treatment Effect (ExMATE) to enhance the impact of causality at the utterance level in training neural conversation models.
arXiv Detail & Related papers (2022-12-20T18:31:50Z) - Analysis of Drug repurposing Knowledge graphs for Covid-19 [0.0]
This study proposes a set of candidate drugs for COVID-19 using Drug repurposing knowledge graph (DRKG)
DRKG is a biological knowledge graph constructed using a vast amount of open source biomedical knowledge.
nodes and relation embeddings are learned using knowledge graph embedding models and neural network and attention related models.
arXiv Detail & Related papers (2022-12-07T19:14:17Z) - KGML-xDTD: A Knowledge Graph-based Machine Learning Framework for Drug
Treatment Prediction and Mechanism Description [11.64859287146094]
We propose KGML-xDTD: a Knowledge Graph-based Machine Learning framework for explainably predicting Drugs Treating Diseases.
We leverage knowledge-and-publication based information to extract biologically meaningful "demonstration paths" as the intermediate guidance in the Graph-based Reinforcement Learning process.
arXiv Detail & Related papers (2022-11-30T17:05:22Z) - RelWalk A Latent Variable Model Approach to Knowledge Graph Embedding [50.010601631982425]
This paper extends the random walk model (Arora et al., 2016a) of word embeddings to Knowledge Graph Embeddings (KGEs)
We derive a scoring function that evaluates the strength of a relation R between two entities h (head) and t (tail)
We propose a learning objective motivated by the theoretical analysis to learn KGEs from a given knowledge graph.
arXiv Detail & Related papers (2021-01-25T13:31:29Z) - Estimation of Causal Effects in the Presence of Unobserved Confounding
in the Alzheimer's Continuum [3.2489082010225494]
We derive a causal graph from the current clinical knowledge on cause and effect in the Alzheimer's disease continuum.
We show that identifiability of the causal effect requires all confounders to be known and measured.
In our theoretical analysis, we prove that using the substitute confounder enables identifiability of the causal effect of neuroanatomy on cognition.
arXiv Detail & Related papers (2020-06-23T16:29:54Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
Disease diagnosis on chest X-ray images is a challenging multi-label classification task.
We propose a Disease Diagnosis Graph Convolutional Network (DD-GCN) that presents a novel view of investigating the inter-dependency among different diseases.
Our method is the first to build a graph over the feature maps with a dynamic adjacency matrix for correlation learning.
arXiv Detail & Related papers (2020-02-26T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.