NetSight: Graph Attention Based Traffic Forecasting in Computer Networks
- URL: http://arxiv.org/abs/2505.07034v1
- Date: Sun, 11 May 2025 16:10:37 GMT
- Title: NetSight: Graph Attention Based Traffic Forecasting in Computer Networks
- Authors: Jinming Xing, Guoheng Sun, Hui Sun, Linchao Pan, Shakir Mahmood, Xuanhao Luo, Muhammad Shahzad,
- Abstract summary: NetSight learns joint-temporal dependencies simultaneously at both global and local scales.<n>We show that NetSight significantly outperforms all prior state-of-the-art approaches.
- Score: 3.731605676514816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The traffic in today's networks is increasingly influenced by the interactions among network nodes as well as by the temporal fluctuations in the demands of the nodes. Traditional statistical prediction methods are becoming obsolete due to their inability to address the non-linear and dynamic spatio-temporal dependencies present in today's network traffic. The most promising direction of research today is graph neural networks (GNNs) based prediction approaches that are naturally suited to handle graph-structured data. Unfortunately, the state-of-the-art GNN approaches separate the modeling of spatial and temporal information, resulting in the loss of important information about joint dependencies. These GNN based approaches further do not model information at both local and global scales simultaneously, leaving significant room for improvement. To address these challenges, we propose NetSight. NetSight learns joint spatio-temporal dependencies simultaneously at both global and local scales from the time-series of measurements of any given network metric collected at various nodes in a network. Using the learned information, NetSight can then accurately predict the future values of the given network metric at those nodes in the network. We propose several new concepts and techniques in the design of NetSight, such as spatio-temporal adjacency matrix and node normalization. Through extensive evaluations and comparison with prior approaches using data from two large real-world networks, we show that NetSight significantly outperforms all prior state-of-the-art approaches. We will release the source code and data used in the evaluation of NetSight on the acceptance of this paper.
Related papers
- Opportunistic Routing in Wireless Communications via Learnable State-Augmented Policies [7.512221808783587]
This paper addresses the challenge of packet-based information routing in large-scale wireless communication networks.<n>Opportunistic routing exploits the broadcast nature of wireless communication to dynamically select optimal forwarding nodes.<n>We propose a State-Augmentation (SA) based distributed optimization approach aimed at maximizing the total information handled by the source nodes in the network.
arXiv Detail & Related papers (2025-03-05T18:44:56Z) - Learning State-Augmented Policies for Information Routing in Communication Networks [84.76186111434818]
We develop a novel State Augmentation (SA) strategy to maximize the aggregate information at source nodes using graph neural network (GNN) architectures.<n>We leverage an unsupervised learning procedure to convert the output of the GNN architecture to optimal information routing strategies.<n>In the experiments, we perform the evaluation on real-time network topologies to validate our algorithms.
arXiv Detail & Related papers (2023-09-30T04:34:25Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
We propose an adapted version of the computationally-Mixer for STTD forecast at scale.
Our results surprisingly show that this simple-yeteffective solution can rival SOTA baselines when tested on several traffic benchmarks.
Our findings contribute to the exploration of simple-yet-effective models for real-world STTD forecasting.
arXiv Detail & Related papers (2023-07-04T05:19:19Z) - AoI-based Temporal Attention Graph Neural Network for Popularity
Prediction and Content Caching [9.16219929722585]
Information-centric network (ICN) aims to proactively keep limited popular content at the edge of network based on predicted results.
In this paper, we leverage an effective dynamic graph neural network (DGNN) to jointly learn the structural and temporal patterns embedded in the bipartite graph.
We also propose an age of information (AoI) based attention mechanism to extract valuable historical information.
arXiv Detail & Related papers (2022-08-18T02:57:17Z) - Rewiring Networks for Graph Neural Network Training Using Discrete
Geometry [0.0]
Information over-squashing is a problem that significantly impacts the training of graph neural networks (GNNs)
In this paper, we investigate the use of discrete analogues of classical geometric notions of curvature to model information flow on networks and rewire them.
We show that these classical notions achieve state-of-the-art performance in GNN training accuracy on a variety of real-world network datasets.
arXiv Detail & Related papers (2022-07-16T21:50:39Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
Simplicial neural networks (SNN) have recently emerged as the newest direction in graph learning.
We present Block Simplicial Complex Neural Networks (BScNets) model for link prediction.
BScNets outperforms state-of-the-art models by a significant margin while maintaining low costs.
arXiv Detail & Related papers (2021-12-13T17:35:54Z) - Semi-supervised Network Embedding with Differentiable Deep Quantisation [81.49184987430333]
We develop d-SNEQ, a differentiable quantisation method for network embedding.
d-SNEQ incorporates a rank loss to equip the learned quantisation codes with rich high-order information.
It is able to substantially compress the size of trained embeddings, thus reducing storage footprint and accelerating retrieval speed.
arXiv Detail & Related papers (2021-08-20T11:53:05Z) - Predicting Critical Nodes in Temporal Networks by Dynamic Graph
Convolutional Networks [1.213512753726579]
It is difficult to identify critical nodes because the network structure changes over time in temporal networks.
This paper proposes a novel and effective learning framework based on the combination of special GCNs and RNNs.
Experimental results on four real-world temporal networks demonstrate that the proposed method outperforms both traditional and deep learning benchmark methods.
arXiv Detail & Related papers (2021-06-19T04:16:18Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks.
We propose a novel scheme dedicated to overcoming this problem and hence strengthen continual learning in graph neural networks (GNNs)
At the heart of our approach is a generic module, termed as topology-aware weight preserving(TWP)
arXiv Detail & Related papers (2020-12-10T22:30:25Z) - TempNodeEmb:Temporal Node Embedding considering temporal edge influence
matrix [0.8941624592392746]
Predicting future links among the nodes in temporal networks reveals an important aspect of the evolution of temporal networks.
Some approaches consider a simplified representation of temporal networks but in high-dimensional and generally sparse matrices.
We propose a new node embedding technique which exploits the evolving nature of the networks considering a simple three-layer graph neural network at each time step.
arXiv Detail & Related papers (2020-08-16T15:39:07Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Temporal Network Representation Learning via Historical Neighborhoods
Aggregation [28.397309507168128]
We propose the Embedding via Historical Neighborhoods Aggregation (EHNA) algorithm.
We first propose a temporal random walk that can identify relevant nodes in historical neighborhoods.
Then we apply a deep learning model which uses a custom attention mechanism to induce node embeddings.
arXiv Detail & Related papers (2020-03-30T04:18:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.