TempNodeEmb:Temporal Node Embedding considering temporal edge influence
matrix
- URL: http://arxiv.org/abs/2008.06940v1
- Date: Sun, 16 Aug 2020 15:39:07 GMT
- Title: TempNodeEmb:Temporal Node Embedding considering temporal edge influence
matrix
- Authors: Khushnood Abbas, Alireza Abbasi, Dong Shi, Niu Ling, Mingsheng Shang,
Chen Liong, and Bolun Chen
- Abstract summary: Predicting future links among the nodes in temporal networks reveals an important aspect of the evolution of temporal networks.
Some approaches consider a simplified representation of temporal networks but in high-dimensional and generally sparse matrices.
We propose a new node embedding technique which exploits the evolving nature of the networks considering a simple three-layer graph neural network at each time step.
- Score: 0.8941624592392746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the evolutionary patterns of real-world evolving complex
systems such as human interactions, transport networks, biological
interactions, and computer networks has important implications in our daily
lives. Predicting future links among the nodes in such networks reveals an
important aspect of the evolution of temporal networks. To analyse networks,
they are mapped to adjacency matrices, however, a single adjacency matrix
cannot represent complex relationships (e.g. temporal pattern), and therefore,
some approaches consider a simplified representation of temporal networks but
in high-dimensional and generally sparse matrices. As a result, adjacency
matrices cannot be directly used by machine learning models for making network
or node level predictions. To overcome this problem, automated frameworks are
proposed for learning low-dimensional vectors for nodes or edges, as
state-of-the-art techniques in predicting temporal patterns in networks such as
link prediction. However, these models fail to consider temporal dimensions of
the networks. This gap motivated us to propose in this research a new node
embedding technique which exploits the evolving nature of the networks
considering a simple three-layer graph neural network at each time step, and
extracting node orientation by Given's angle method. To prove our proposed
algorithm's efficiency, we evaluated the efficiency of our proposed algorithm
against six state-of-the-art benchmark network embedding models, on four real
temporal networks data, and the results show our model outperforms other
methods in predicting future links in temporal networks.
Related papers
- DANI: Fast Diffusion Aware Network Inference with Preserving Topological
Structure Property [2.8948274245812327]
We propose a novel method called DANI to infer the underlying network while preserving its structural properties.
DANI has higher accuracy and lower run time while maintaining structural properties, including modular structure, degree distribution, connected components, density, and clustering coefficients.
arXiv Detail & Related papers (2023-10-02T23:23:00Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - DyCSC: Modeling the Evolutionary Process of Dynamic Networks Based on
Cluster Structure [1.005130974691351]
We propose a novel temporal network embedding method named Dynamic Cluster Structure Constraint model (DyCSC)
DyCSC captures the evolution of temporal networks by imposing a temporal constraint on the tendency of the nodes in the network to a given number of clusters.
It consistently outperforms competing methods by significant margins in multiple temporal link prediction tasks.
arXiv Detail & Related papers (2022-10-23T10:23:08Z) - Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs [51.51417735550026]
Methods for machine learning on temporal networks generally exhibit at least one of two limitations.
We present a simple method that avoids both shortcomings: construct the line graph of the network, which includes a node for each interaction, and weigh the edges of this graph based on the difference in time between interactions.
Empirical results on real-world networks demonstrate our method's efficacy and efficiency on both edge classification and temporal link prediction.
arXiv Detail & Related papers (2022-09-30T18:24:13Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Inductive Representation Learning in Temporal Networks via Causal
Anonymous Walks [51.79552974355547]
Temporal networks serve as abstractions of many real-world dynamic systems.
We propose Causal Anonymous Walks (CAWs) to inductively represent a temporal network.
CAWs are extracted by temporal random walks and work as automatic retrieval of temporal network motifs.
arXiv Detail & Related papers (2021-01-15T05:47:26Z) - EPNE: Evolutionary Pattern Preserving Network Embedding [26.06068388979255]
We propose EPNE, a temporal network embedding model preserving evolutionary patterns of the local structure of nodes.
With the adequate modeling of temporal information, our model is able to outperform other competitive methods in various prediction tasks.
arXiv Detail & Related papers (2020-09-24T06:31:14Z) - Link Prediction for Temporally Consistent Networks [6.981204218036187]
Link prediction estimates the next relationship in dynamic networks.
The use of adjacency matrix to represent dynamically evolving networks limits the ability to analytically learn from heterogeneous, sparse, or forming networks.
We propose a new method of canonically representing heterogeneous time-evolving activities as a temporally parameterized network model.
arXiv Detail & Related papers (2020-06-06T07:28:03Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
We propose a novel dynamic heterogeneous network embedding method, termed as DyHATR.
It uses hierarchical attention to learn heterogeneous information and incorporates recurrent neural networks with temporal attention to capture evolutionary patterns.
We benchmark our method on four real-world datasets for the task of link prediction.
arXiv Detail & Related papers (2020-04-01T17:16:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.