YANNs: Y-wise Affine Neural Networks for Exact and Efficient Representations of Piecewise Linear Functions
- URL: http://arxiv.org/abs/2505.07054v1
- Date: Sun, 11 May 2025 16:55:38 GMT
- Title: YANNs: Y-wise Affine Neural Networks for Exact and Efficient Representations of Piecewise Linear Functions
- Authors: Austin Braniff, Yuhe Tian,
- Abstract summary: Y-wise Affine Neural Networks (YANNs) are a fully-explainable network architecture that represent piecewise affine functions with polytopic.<n>YANNs maintain all mathematical properties of the original formulations.<n>They theoretically computes optimal control laws as a piecewise affine function of states, outputs, setpoints, and disturbances.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work formally introduces Y-wise Affine Neural Networks (YANNs), a fully-explainable network architecture that continuously and efficiently represent piecewise affine functions with polytopic subdomains. Following from the proofs, it is shown that the development of YANNs requires no training to achieve the functionally equivalent representation. YANNs thus maintain all mathematical properties of the original formulations. Multi-parametric model predictive control is utilized as an application showcase of YANNs, which theoretically computes optimal control laws as a piecewise affine function of states, outputs, setpoints, and disturbances. With the exact representation of multi-parametric control laws, YANNs retain essential control-theoretic guarantees such as recursive feasibility and stability. This sets YANNs apart from the existing works which apply neural networks for approximating optimal control laws instead of exactly representing them. By optimizing the inference speed of the networks, YANNs can evaluate substantially faster in real-time compared to traditional piecewise affine function calculations. Numerical case studies are presented to demonstrate the algorithmic scalability with respect to the input/output dimensions and the number of subdomains. YANNs represent a significant advancement in control as the first neural network-based controller that inherently ensures both feasibility and stability. Future applications can leverage them as an efficient and interpretable starting point for data-driven modeling/control.
Related papers
- Fast State-Augmented Learning for Wireless Resource Allocation with Dual Variable Regression [83.27791109672927]
We show how a state-augmented graph neural network (GNN) parametrization for the resource allocation policy circumvents the drawbacks of the ubiquitous dual subgradient methods.<n>Lagrangian maximizing state-augmented policies are learned during the offline training phase.<n>We prove a convergence result and an exponential probability bound on the excursions of the dual function (iterate) optimality gaps.
arXiv Detail & Related papers (2025-06-23T15:20:58Z) - efunc: An Efficient Function Representation without Neural Networks [46.76882780184126]
We propose a novel framework for continuous function modeling. Most existing works can be formulated using this framework.<n>We then introduce a compact function representation, which is based on parameter-efficient functions bypassing both neural networks and complex structures.
arXiv Detail & Related papers (2025-05-27T15:16:56Z) - SineKAN: Kolmogorov-Arnold Networks Using Sinusoidal Activation Functions [0.0]
We present a model in which learnable grids of B-Spline activation functions are replaced by grids of re-weighted sine functions (SineKAN)<n>We show that our model can perform better than or comparable to B-Spline KAN models and an alternative KAN implementation based on periodic cosine and sine functions.
arXiv Detail & Related papers (2024-07-04T20:53:19Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
We present Layer-wise Feedback Propagation (LFP), a novel training principle for neural network-like predictors.<n>LFP decomposes a reward to individual neurons based on their respective contributions to solving a given task.<n>Our method then implements a greedy approach reinforcing helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
This paper proposes a theoretical and computational framework for training and robustness verification of implicit neural networks.
We introduce a related embedded network and show that the embedded network can be used to provide an $ell_infty$-norm box over-approximation of the reachable sets of the original network.
We apply our algorithms to train implicit neural networks on the MNIST dataset and compare the robustness of our models with the models trained via existing approaches in the literature.
arXiv Detail & Related papers (2022-08-08T03:13:24Z) - Graph-adaptive Rectified Linear Unit for Graph Neural Networks [64.92221119723048]
Graph Neural Networks (GNNs) have achieved remarkable success by extending traditional convolution to learning on non-Euclidean data.
We propose Graph-adaptive Rectified Linear Unit (GReLU) which is a new parametric activation function incorporating the neighborhood information in a novel and efficient way.
We conduct comprehensive experiments to show that our plug-and-play GReLU method is efficient and effective given different GNN backbones and various downstream tasks.
arXiv Detail & Related papers (2022-02-13T10:54:59Z) - Neural network relief: a pruning algorithm based on neural activity [47.57448823030151]
We propose a simple importance-score metric that deactivates unimportant connections.
We achieve comparable performance for LeNet architectures on MNIST.
The algorithm is not designed to minimize FLOPs when considering current hardware and software implementations.
arXiv Detail & Related papers (2021-09-22T15:33:49Z) - It's FLAN time! Summing feature-wise latent representations for
interpretability [0.0]
We propose a novel class of structurally-constrained neural networks, which we call FLANs (Feature-wise Latent Additive Networks)
FLANs process each input feature separately, computing for each of them a representation in a common latent space.
These feature-wise latent representations are then simply summed, and the aggregated representation is used for prediction.
arXiv Detail & Related papers (2021-06-18T12:19:33Z) - AI without networks [0.0]
We develop a network-free framework for AI incorporating generative modeling.
We demonstrate this framework with examples from three different disciplines - ethology, control theory, and mathematics.
We also propose an easily computed method of credit assignment based on this framework, to help address ethical-legal challenges raised by generative AI.
arXiv Detail & Related papers (2021-06-07T05:50:02Z) - OGGN: A Novel Generalized Oracle Guided Generative Architecture for
Modelling Inverse Function of Artificial Neural Networks [0.6091702876917279]
This paper presents a novel Generative Neural Network Architecture for modelling the inverse function of an Artificial Neural Network (ANN) either completely or partially.
The proposed Oracle Guided Generative Neural Network, dubbed as OGGN, is flexible to handle a variety of feature generation problems.
The constraint functions enable a neural network to investigate a given local space for a longer period of time.
arXiv Detail & Related papers (2021-04-08T17:28:52Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Controllable Orthogonalization in Training DNNs [96.1365404059924]
Orthogonality is widely used for training deep neural networks (DNNs) due to its ability to maintain all singular values of the Jacobian close to 1.
This paper proposes a computationally efficient and numerically stable orthogonalization method using Newton's iteration (ONI)
We show that our method improves the performance of image classification networks by effectively controlling the orthogonality to provide an optimal tradeoff between optimization benefits and representational capacity reduction.
We also show that ONI stabilizes the training of generative adversarial networks (GANs) by maintaining the Lipschitz continuity of a network, similar to spectral normalization (
arXiv Detail & Related papers (2020-04-02T10:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.